Subsolidus phase relations in a mantle pyroxenite: an experimental study from 0.7 to 1.5 GPa

Borghini, G. and Fumagalli, P.

Dipartimento di Scienze della Terra, via Botticelli 23, 20133 Milano, Italy

Corresponding Author:

Giulio Borghini
Dipartimento di Scienze della Terra « Ardito Desio »
Università degli Studi di Milano
Via Botticelli 23
20133 Milano (Italy)

Email: giulio.borghini@unimi.it

Keywords:
Pyroxenites, experimental petrology, piston cylinder experiments, garnet stability, plagioclase, spinel, subsolidus assemblage, lithospheric mantle
Abstract

Pyroxenites are diffuse heterogeneity in the upper mantle and represent key lithologies in melting processes and mantle deformation. Mantle peridotites exposed in ultramafic massifs are often veined by pyroxenites. These latter experienced the same metamorphic evolution as host peridotite and may develop substantially different phase assemblages in response to the different bulk composition. Despite of several experimental studies focused on melting relations in pyroxenites, subsolidus phase relations are still poorly known. We provide new experimental constraints on phase stability and mineral chemistry for a natural mantle pyroxenite. Piston cylinder experiments were conducted from 0.7 to 1.5 GPa, 1100-1250°C. Al-rich spinel, clinopyroxene, orthopyroxene and olivine are ubiquitous phases within the whole pressure range investigated. At 1100°C, plagioclase is stable up to 0.9 GPa; anorthite content \([\text{An} = \text{Ca}/(\text{Ca}+\text{Na})]\) decreases as a function of pressure from 0.70 at 0.7 GPa to 0.61 at 0.9 GPa. Maximum plagioclase modal abundance of 14 wt. % forms at 0.7 GPa; this amount is more than the double of that experimentally determined at same P-T in fertile lherzolite (5-6 wt. %). At intermediate pressure (1.0-1.4 GPa), modal spinel is almost constant (4-5 wt. %). A pyrope-rich garnet is stable at 1.5 GPa and its modal abundance increases with decreasing temperature from 5 to 10 wt. %, from 1230°C to 1150°C. Al content in pyroxenes varies significantly across the plagioclase-out and garnet-in transitions and is not pressure-dependent in the spinel pyroxenite field. At 1100°C, the plagioclase-out boundary occurs at comparable pressures in the pyroxenite and in fertile lherzolites. On the contrary, the garnet-in curve is located at significantly lower pressure than for mantle peridotites.
1. Introduction

Pyroxenites are considered as diffuse heterogeneities in the upper mantle (e.g. Bodinier & Godard, 2014). Despite they are volumetrically subordinated with respect to peridotites, pyroxenites play a key role in mantle melting processes (e.g. Hirschmann & Stolper, 1996; Phipps Morgan, 2001; Shorttle & McLennan, 2011; Lambart et al., 2016) and in mantle rheology (e.g. Hidas et al., 2013; Henry et al., 2017). Indeed, they have been invoked as diffuse components in mantle sources of basalts in several magmatic environments (e.g. Sobolev et al., 2005, 2007; Lambart et al., 2013 and references therein), and recognized as catalyst for lithosphere softening (Hidas et al., 2013).

Pyroxene-rich veins or layers embedded in mantle peridotites have been often observed in ophiolitic and orogenic ultramafic massifs (e.g. Bodinier & Godard, 2014 and references therein) and in mantle xenoliths (e.g. Gonzaga et al., 2010; Aulbach & Jacob, 2016) and their origin has been related to high-pressure magmatic segregation, metamorphism and melt-rock reaction processes. Some of these pyroxenites represent long-lived deep mantle heterogeneity that experienced the same metamorphic evolution as the host peridotites at lithospheric mantle levels. However, pyroxenites are expected to develop sensibly different phase assemblages at fixed pressure (P) and temperature (T) conditions as a result of different bulk composition (e.g. Schmadicke, 2000). In particular, the P-T stability of aluminous phases is strongly affected by major elements composition, such as Al₂O₃, Cr₂O₃, CaO and Na₂O contents. Experimental studies have suggested that, in pyroxenites garnet appears at significantly lower pressure than in peridotites (e.g. Irving, 1974, Adam et al., 1992), explaining the widespread occurrence of garnet-pyroxenites layers in spinel-bearing peridotites (e.g. Bodinier et al., 1987a and b; Garrido & Bodinier, 1999; Takazawa et al., 1999; Morishita & Arai, 2001; Montanini et al., 2006, 2012; van Acken et al., 2010; Gysi et al., 2011, Montanini & Tribuzio, 2015).

Although subsolidus phase relations in peridotites have been experimentally investigated in both simplified and complex chemical systems (Fumagalli & Klemme, 2015 and references therein), very few experimental works have been focused on subsolidus phase equilibria in pyroxenites and the stability of aluminous phases is still only barely known (e.g. Irving, 1974; Adam et al., 1992).

In this paper we present and discuss the results of subsolidus experiments performed on a natural pyroxenite at pressure from 0.7 to 1.5 GPa and 1100-1230°C. Specific aim is to
investigate the stability of plagioclase, spinel and garnet in this peculiar pyroxenite bulk in order to provide useful geobarometric information for the subsolidus evolution of exhumed ultramafic mantle sectors.

2. Experimental and analytical methods

As starting material we selected an olivine-websterite (GV10), sampled in the ophiolitic mantle sequences from the External Liguride Unit (EL, Northern Apennines, Italy; Borghini et al., 2013, 2016). Pyroxenites from this mantle section occur as cm-thick layers subparallel to the mantle foliation of host peridotite (Rampone et al., 1995; Borghini et al., 2013, 2016). Field, microstructural and geochemical observations indicated that they originated by pyroxenite melt-peridotite interactions, thus supporting its secondary origin (Lambart et al., 2012, 2013). Trace element compositions strongly suggest that many of these pyroxenite layers contained garnet in primary mineral assemblage, thus indicating crystallization at relatively deep mantle level (Borghini et al., 2016). Much later than the pyroxenite emplacement, inferred to have occurred at Ordovician ages (Borghini et al., 2013), this veined mantle sector experienced a subsolidus spinel- to plagioclase-facies decompressional tectonic evolution. This latter was associated to mantle exhumation during the extension of the Jurassic Tethys lithosphere and it is testified by plagioclase-bearing neoblastic assemblages in both peridotite and pyroxenite (Borghini et al., 2011, 2016).

Pyroxenite GV10 well preserves microstructural and geochemical features related to its deep melt-rock reaction origin and, among the EL pyroxenites, it better records chemical imprinting inherited by a garnet-bearing primary assemblage (Borghini et al., 2016).

The major element bulk-rock composition of GV10 and other pyroxenite bulk compositions investigated in previous subsolidus experiments are reported in Table 1. The melting relations of GV10 at 1.0 and 1.5 GPa have been recently investigated (Borghini et al., 2017), and therefore the phase relations at solidus conditions are fully constrained.

A glass has been prepared by complete melting of rock powder at 1500°C in a gas mixing vertical furnace operating at fayalite-magnetite-quartz (FMQ) fO2 and quenched in dry ice (Borghini et al., 2017). To promote the nucleation of the minor phases in subsolidus experiments, powdered glass was seeded with 1 wt% of a 1:1 mixture of synthetic pure spinel (Al2O3 = 71.67 wt%, MgO = 28.33 wt%) and Dora-Maira pyrope (SiO2 = 44.71 wt%, Al2O3 =
25.29 wt%, MgO = 29.99 wt%). The bulk seeds result as follow SiO\textsubscript{2} = 22.36 wt%, Al\textsubscript{2}O\textsubscript{3} = 48.48 wt%, MgO = 29.16 wt%. The very low amount of seeds in the starting material (1 wt%) and the occurrence of large unreacted seed relicts in the experiments indicate that seeds addition did not significantly affect the final bulk composition.

Experiments were performed at pressures from 0.7 to 1.5 GPa, and temperatures from 1100°C to 1250°C (Table 2), at the Laboratorio di Petrologia Sperimentale, Dipartimento di Scienze della Terra, University of Milano. Experiments up to 1.0 GPa were carried out in a single-stage piston cylinder; for experiments at higher pressure an end-loaded piston cylinder was used. MgO-Pyrex-Salt assemblies have been adopted and run lasted from 94 to 495 hours (Table 2). Approximately 20 mg of starting material was loaded into a graphite inner capsule (outer diameter 2.8 mm), and then welded into an outer Pt capsule (outer diameter 3.0 mm, length about 7-8 mm). graphite is used to isolate the sample from the Pt capsule and avoid Fe-loss (Kinzler, 1997; Walter, 1998). The graphite-Pt assembly, combined with pre-conditioning of the starting material at FMQ, maintained the oxygen fugacity close to the C-CO/CO\textsubscript{2} equilibrium (Ulmer & Luth, 1991). In order to ensure nominally anhydrous conditions, the platinum-graphite capsule with the starting material was dried in an oven at 250°C over a night before being rapidly welded shut. The thermocouple tip was separated from the platinum capsule by a 0.5-mm thick hard alumina disc. Assemblies were kept in oven at about 200°C for several hours before running the experiments. Temperature was measured by K-type and S-type thermocouples and is considered to be accurate to ±5°C. According to piston cylinder calibration, pressure uncertainties are assumed to be ± 3%.

An initial pressure of 0.25 GPa was applied, then the sample was first heated to 400°C for 10 minutes in order to soften the Pyrex, pressure was raised to the experimental value before reaching the desired temperature.

Capsules were enclosed in epoxy, sectioned lengthwise, polished and carbon-coated. Run products were inspected by back-scattered electron images (BSE) and microanalyses were performed using a JEOL JXA 8200 Superprobe equipped with five WDS-wavelength-dispersive spectrometers and one energy dispersive spectrometer (EDS) at the Dipartimento di Scienze della Terra, University of Milano. Both images and X-ray element maps were extremely useful in textural examination of the experimental charges. Analyses on mineral phases were performed using 1µm beam size and beam conditions of 15 kV and 5 nA. Counting time was 30 s for peak and 10 s for background.
3. Experimental results

3.1. Textures and phase stability

Run products and experimental conditions are reported in Table 2 and summarized in Fig. 1. Textural observations show grain size varying between 2-25μm on average. As expected by the higher temperature, slightly coarser textures have been found in melt-bearing experiments (GV10-83-1 and GV10-83-9, Table 2).

A plagioclase-bearing assemblage composed of clinopyroxene, orthopyroxene, olivine, plagioclase and Cr-spinel is stable from 0.7 to 0.9 GPa at 1100°C. Pyroxenes form the larger grains (up to 25μm), usually showing prismatic habit (Fig. 2a). Olivine occurs as small sized crystals (≤ 5μm), with a rounded habit (Fig. 2a). Plagioclase is homogeneously distributed in the run charges and occurs as subhedral crystals ranging in size from 2 to 8μm (Fig. 2a). Cr-bearing spinel forms thin rims on large relics of spinel seeds, or occurs as small grains, around 2-3μm, homogeneously distributed within the charge (Fig. 2a). The extremely fine grain size of olivine and spinel in experiment at 0.7 GPa and 1100°C prevented to obtain satisfactory chemical analysis.

A spinel-bearing assemblage made by clinopyroxene, orthopyroxene, olivine and spinel is stable from 1 GPa at 1100-1180°C, to 1.4 GPa at 1150°C. In these experiments, clinopyroxene occurs as large grains of up to 20 μm showing triple junctions (Fig. 2b). Orthopyroxene is easily recognizable in BSE images by its dark grey contrast and shows large prismatic habit (Fig. 2b). Rounded crystals of olivine up to 10μm in size have grey tone intermediate between clinopyroxene and orthopyroxene (Fig. 2b). Spinel is present as small rounded crystals up to 5μm in size.

A garnet-bearing assemblage composed of clinopyroxene, orthopyroxene, olivine, garnet and spinel is stable at 1.5 GPa and 1150-1230°C. These experiments are characterized by textures with grains size ranging between 2 and 10μm. Garnet neoblasts occur as rounded crystals either on or far from the garnet seeds (Fig. 2c), as revealed by Ca-Al X-ray mapping (Fig. 3). Rare spinel is present in garnet-bearing experiments as very small rounded grains (1-3μm), mostly recognized with the support of X-ray mapping (Fig. 3).

3.2. Minerals chemistry
Pyroxenes display significant chemical changes as a function of pressure. Clinopyroxene has X_{Mg} values [$X_{Mg} = Mg/(Mg+Fe_{tot})$] between 0.83 and 0.85. In the garnet-bearing experiments (P > 1.4 GPa), systematic higher X_{Mg} values reflect the coexistence with garnet having much lower X_{Mg}. The Al content progressively increases with pressure at 1100°C, in the plagioclase-bearing experiments and across the plagioclase-out curve (Fig. 4a). It ranges from 0.216 a.p.f.u. at 0.7 GPa, to 0.355 a.p.f.u. at 1.0 GPa, and is rather constant within the spinel facies (0.351-0.377) (Table 3). A slight Al decrease is also observed as garnet appears at 1.5 GPa, with Al content increasing from 1150 to 1230°C (Table 3 and Fig. 4a). This is in agreement with results reported in experiments on peridotites in both CaO-MgO-Al$_2$O$_3$-SiO$_2$ system (Obata 1976; Herzberg, 1978; Gasparik, 1984) and more complex chemical systems (Borghini et al., 2010).

Orthopyroxene presents X_{Mg} values from 0.84 to 0.85, with only slight variations as observed in clinopyroxene. The Al content shows a positive correlation with pressure within the stability of plagioclase, increasing from 0.179 to 0.303 a.p.f.u. at 0.8 and 1 GPa respectively. It slightly decreases across the garnet-in curve at 1150°C (Table 4 and Fig. 4b). Ca contents vary between 0.049 and 0.071 a.p.f.u., and Ti abundance is as low as 0.003-0.007 a.p.f.u. (Table 4). As in clinopyroxene, Cr is very low (0.002-0.004 a.p.f.u.).

 Olivines have homogeneous compositions with X_{Mg} value [$X_{Mg} = Mg/(Mg+Fe_{tot})$] around 0.83, and very low TiO$_2$ (≤ 0.03 wt%) and Cr$_2$O$_3$ (≤ 0.05 wt%) (Table 5).

Reliable spinel compositions have been obtained mostly by combining WDS analysis with X-ray mapping on small rounded neoblasts isolated in the mineral matrix. In cases of very small grains, spinel compositions has been derived by removing the chemical effect of the contaminating host minerals, usually when spinel was included in clinopyroxene. All iron was considered as Fe$^{2+}$ and Fe$^{3+}$ was not calculated, because oxygen fugacity was not buffered. Spinel has X_{Mg} values between 0.63 and 0.68 without any correlation with pressure and temperature (Table 6). Significant variations of X_{Cr} are observed with the highest X_{Cr} values in experiments within the plagioclase stability field, i.e. 0.079 at 0.8 GPa and 0.062 at 0.9 GPa (Table 6). On the contrary, X_{Cr} value is very low in spinel-facies experiments,
ranging 0.021-0.023 a.p.f.u., and increases in garnet-bearing experiments at 1.5 GPa. Furthermore a negative correlation with temperature from 1150 to 1230°C is also shown (Table 6). Ti content is usually lower than 0.006 a.p.f.u. (Table 6).

Despite its small grain size (usually < 10 μm), we obtained several good plagioclase analyses with negligible contamination (MgO < 0.2 wt. %). Plagioclase is characterized by anorthite contents \([\text{An} = \text{Ca}/(\text{Ca} + \text{Na})]\), which is negatively correlated with pressure (Table 7). At 1100°C, anorthite decreases from 0.70 to 0.61 at pressure increasing from 0.7 to 0.9 GPa, in excellent agreement with the An-pressure dependence documented by subsolidus experiments on lherzolite bulks (Fig. 5; Borghini et al., 2010, 2011; Fumagalli et al., 2017).

Garnets are pyrope-rich with X_Mg values of 0.75-0.76 and Ca content positively correlated with temperature ranging from 0.481 a.p.f.u. at 1150°C to 0.525 a.p.f.u. at 1230°C (Table 7).

3.3. Approach to equilibrium

Demonstration of equilibrium through reversal experiments is difficult in case of complex chemical systems and for continuous reactions. However, the approach to equilibrium is carefully assessed through the following observations: (1) the growth of compositionally homogeneous (Fig. 3), chemically unzoned minerals, likely enhanced by long-time duration of experimental runs (see Table 2), (2) systematic and consistent variations in mineral chemistry at different P-T conditions (Fig. 4 and 5), (3) maintenance of constant bulk composition, as supported by mass balance calculations (see below). Long duration of experiments led to well-developed textures with mineral phases homogeneously distributed in the charges. Furthermore, the behaviour of seeds can be taken into account to demonstrate a close approach to equilibrium; when not completely reabsorbed, seeds promoted growth rather than nucleation (Fig. 3).

4. Discussion

4.1. Mineral modal abundance and quantification of the reactions
Phase abundances have been derived by mass balance calculations using a weighted least-squares minimization procedure (Table 8). We included in the mass balance calculations eight major element oxides, SiO$_2$, TiO$_2$, Al$_2$O$_3$, Cr$_2$O$_3$, FeO, MgO, CaO and Na$_2$O. As the ferric/ferrous ratio is unknown in the run charges, all iron has been assumed as Fe$^{2+}$, although moderate Fe$^{3+}$ amount can be contained in spinel. Standard errors on the chemical analyses have been propagated to the phase abundances by the Monte Carlo method. Up to 10000 simulations normally distributed around the average value of each component of each phase have been evaluated and then statistically treated (Fumagalli et al., 2009).

Representative results are shown in Figure 6, in which modal abundances (wt. %) are reported as a function of pressure at 1100 and 1150°C. Modal abundance of plagioclase decreases at increasing pressure until its breakdown at 1 GPa and this is accompanied by modal olivine decrease and increase of spinel and pyroxenes. Quantification of the reaction governing the pressure-dependent plagioclase disappearance in pyroxenite GV10 has been obtained by balancing mineral compositions across the plagioclase-out curve at 1100°C (Fig. 6),

$$0.21\text{pl} + 0.21\text{ol} + 0.20\text{cpx}_1 + 0.35\text{opx}_1 + 0.03\text{spl}_1 = 0.42\text{cpx}_2 + 0.50\text{opx}_2 + 0.08\text{split}. \quad (1)$$

In the mass balance calculation, the average compositions of reactants (pl, ol, cpx$_1$, opx$_1$, spl$_1$) refer to the phase compositions from run GV10-83-24 (0.9 GPa, 1100°C), and those of products (cpx$_2$, opx$_2$, spl$_2$) from run GV10-83-5 (1.0 GPa, 1100°C; Table 2).

This reaction is similar to that experimentally derived for mantle lherzolites (Borghini et al., 2010), but the higher plagioclase coefficient indicates that more modal plagioclase is involved in the pyroxenite, as expected by the higher bulk Al$_2$O$_3$ and CaO contents. Plagioclase modal abundance of 14 wt. % forms at 0.7 GPa, 1100°C (Table 8); this amount is more than the double of that developed at same P-T conditions in fertile lherzolite (5-6 wt. %, Borghini et al., 2010).

Additionally, relatively high bulk Al$_2$O$_3$ in the pyroxenite results in modal spinel up to 4.7 wt. % (Table 8), almost twice than the spinel amount derived from experiments (2.5 wt. %, Borghini et al., 2010) and thermodynamic calculations (about 2.0 wt. %, Ziberna et al., 2013) on fertile lherzolite bulk compositions. Modal spinel is rather constant within the spinel-bearing experiments (4.1-4.7 wt. %), with no appreciable dependence on pressure (Fig. 6).

At P > 1.4 GPa, 1150°C, the appearance of garnet is coupled with an increase of modal olivine and a decrease of spinel and pyroxenes, as documented at higher pressure in
previous experimental works on ultramafic systems (e.g. O’Neill, 1981; Klemme & O’Neill, 2000; Walter et al., 2002; Klemme, 2004). Our mass balance calculations, accounting for mineral composition changes across the garnet-in curve at 1150°C (Fig. 6), yielded the following reaction:

\[0.04 \text{sp}_3 + 0.38 \text{cpx}_3 + 0.58 \text{opx}_3 = 0.30 \text{cpx}_4 + 0.51 \text{opx}_4 + 0.17 \text{grt} + 0.02 \text{ol} (+\text{sp}_4). \quad (2)\]

The reaction (2) has been balanced by using the average phase compositions of reactants (\text{sp}_3, \text{cpx}_3, \text{opx}_3) from run GV10-83-17 (1.4 GPa, 1150°C), and those of products (\text{cpx}_4, \text{opx}_4, \text{grt}, \text{ol}, \text{sp}_4) from run GV10-83-3 (1.5 GPa, 1150°C; Table 2).

Cr-bearing rims on spinel seeds in garnet-bearing experiments have suggested that spinel is still stable at 1.5 GPa, together with garnet. However, quantification of sp\text{4} in reaction (2) is made difficult by the high uncertainty on spinel composition due to its very small size. Reaction coefficient of sp\text{4} obtained by balancing reaction (2) is well below 0.01 (around 0.002). Zibera et al. (2013) argued that very low spinel modes in many garnet peridotite xenoliths result from spinel overlooking. This effect is amplified in GV10 garnet pyroxenite having Cr$_2$O$_3$ content ($X_{Cr} = Cr/(Cr+Al) = 0.01$) much lower than lherzolites ($X_{Cr} = 0.07-0.10$, Borghini et al., 2010).

4.2. The effect of bulk pyroxenite composition on phase stability

Given the large compositional variability of pyroxenites, the bulk composition is relevant in depicting the phase assemblage stable at fixed pressure and temperature.

In peridotites the occurrence of garnet is related to the stability of the olivine-garnet join following the reaction:

\[\text{spinel} + \text{clinopyroxene} + \text{orthopyroxene} = \text{garnet} + \text{olivine} \quad (3)\]

that defines the spinel to garnet facies transition (e.g. Kushiro & Yoder, 1966; O’Hara et al., 1971; Herzberg, 1978, Fumagalli and Klemme, 2015). It is well established that Cr strongly affects the location of spinel to garnet transition stabilizing spinel at higher pressure and resulting in spinel-garnet coexistence (Klemme, 2004). Similarly, the persistence of plagioclase to higher pressure has been established to be sensitive to the normative Ab/Di
ratio and X_{Cr} of the bulk (Borghini et al., 2010).

In basalt-like compositions, the reaction:

$$\text{plagioclase} + \text{clinopyroxene} + \text{orthopyroxene} + \text{spinel} = \text{garnet} (4)$$

determines the lowest possible pressure whereby garnet is stable (e.g. Kushiro & Yoder, 1966; Herzberg, 1976). In this case a pyrope-grossular garnet appears at 1.3-1.5 GPa, 1000°C (Kushiro & Yoder, 1966). Variations in bulk X_{Mg} would however lead to the stability of an almandine-grossular garnet as breakdown product of olivine + plagioclase assemblages at much lower pressure, i.e. 0.7 GPa, 1000°C (Green & Hibberson, 1970).

The present study further shows the effect of bulk composition on the stable assemblage. Phase assemblages at 1 GPa, 1000-1100°C are plotted into the compositional space (Mg,Fe)O-CaO*-SiO$_2$-(Al,Cr)$_2$O$_3$ for the system Cr-FNCMAS, constructed projecting mineral compositions from the exchange vectors CaAlNa$_{1.1}$Si$_{1.1}$, MgFe$_{1.1}$ and AlCr$_{1.1}$. CaO* includes the contribution of Ca and Na through the vector CaAlNa$_{1.1}$Si$_{1.1}$.

The bulk compositions are indicated together with the amount of normative plagioclase (Pl$_{CIPW}$). GV10 presents the same phase assemblage, olivine, orthopyroxene, clinopyroxene and spinel of a fertile lherzolite (FLZ). The higher normative Pl$_{CIPW}$ results in a higher modal abundance of clinopyroxene (and spinel) as the bulk approaches the orthopyroxene-clinopyroxene-spinel plane. At further increase of Pl$_{CIPW}$ as observed in pyroxenite DR9734 (Pl$_{CIPW}$ = 39.1), the stable assemblage (orange star in Figure 7), at the same PT conditions is plagioclase, spinel clinopyroxene and garnet (Adam et al., 1992). It should be noted that the stable garnet in pyroxenite DR9734 has, as expected, slightly lower X_{Mg} (pyrope = 0.53 molar fraction) and higher Ca (grossular = 0.19) with respect to garnets stabilized in GV10 pyroxenite at higher pressure (at 1.5 GPa, 1150 °C, pyrope = 0.64, grossular = 0.14). Its occurrence is related to reaction (4).

In general, the clinopyroxene-orthopyroxene-spinel plane acts as a barrier separating olivine-bearing from olivine-free assemblages, the latter being able to stabilize associations of garnet and spinel, as observed in websterite R394 of Irving (1974), or garnet, spinel and plagioclase, as in clinopyroxenites DR9734 (Adam et al., 1992) and R392 (Irving, 1974). GV10 pyroxenite bulk plots near this barrier and within the spinel-facies low modal olivine is stabilized (approx. 5 wt. %, Table 8). This confutes the lacking of olivine in the spinel-bearing assemblage estimated by using the composition of the natural mineral phases (Borghini et al., 2016), indicating that for GV10 bulk olivine is stable, at least, from 0.7 to 1.5
In the following sections we will discuss plagioclase-out boundary, i.e. reaction (1) and garnet-in curve, i.e. reaction (2), as derived by present experiments in relation with peridotite bulk compositions.

4.2.1. Near-solidus plagioclase-out curve

Defining the pressure limit of plagioclase stability in pyroxenites is useful to obtain information on geobarometric evolution of mantle rocks because pyroxenites are often associated to peridotites in ultramafic massifs.

Experimental studies in simplified chemical system CaO-MgO-Al₂O₃-SiO₂ (CMAS) have indicated that the stability of plagioclase lherzolite is limited at pressure below 1 GPa (e.g. Kushiro & Yoder, 1966; Obata, 1976; Gasparik, 1984). Addition of Na to the CMAS system makes the plagioclase-in reaction divariant and extends the pressure stability of plagioclase to pressure higher than 1 GPa (e.g. Walter & Presnall, 1994).

Subsolidus experiments on peridotite modeled in complex chemical systems revealed that the pressure of plagioclase-out curve is strongly influenced by the bulk Ab/Di ratio and X_{Cr} (e.g. Green & Hibberson, 1970; Green & Falloon, 1998; Borghini et al., 2010). Higher bulk Ab/Di ratio leads to crystallization of a more albitic plagioclase, expanding the plagioclase stability towards higher pressure (e.g. Green & Hibberson, 1970; Walter & Presnall, 1994; Green & Falloon, 1998; Falloon et al., 1999; Borghini et al., 2010; Till et al., 2012; Laporte et al., 2014; Fumagalli et al., 2017). At near-solidus temperatures, plagioclase persists up to 1.3 GPa in fertile lherzolites (e.g. Falloon et al., 1999; Laporte et al., 2014).

Moreover, the plagioclase-out boundary is also sensitive to the bulk X_{Cr} (or the chromite/anorthite normative ratio), which acts in favor of spinel expanding its stability toward lower pressure at the expense of plagioclase (Borghini et al., 2010).

In Figure 8 the plagioclase-out boundary derived for pyroxenite GV10 is compared with equilibria determined for different peridotite bulks in complex chemical systems, at the same temperatures. The high-pressure limit of plagioclase stability in GV10 occurs within the pressure range of the boundaries determined for these lherzolites. In particular, at 1100°C the plagioclase-out curve of GV10 is very close to that of the Na-rich lherzolite HNa-FLZ recently investigated by Fumagalli et al. (2017) (Fig. 8). This further supports that the effect of the much lower bulk X_{Cr} of pyroxenite (0.01) is counterbalanced by its Ab/Di ratio (0.11).
significantly lower than those of some mantle peridotites (Ab/Di = 0.15-0.30; Green & Falloon, 1998; Borghini et al., 2010).

As a result, plagioclase-facies recrystallization is expected to occur at very close depths or, possibly, simultaneously in fertile lherzolites and in high-Mg pyroxenites, such as pyroxenite GV10 and R934 (Irving, 1974). This is consistent with the observations in ultramafic massifs where both pyroxenites and peridotites may be partially re-equilibrated at plagioclase-facies conditions. This is the case of mantle sequences from EL ophiolites (Rampone et al., 1995; Montanini et al., 2006; Borghini et al., 2010, 2011, 2013, 2016), as well as, mantle tectonites in Ronda (e.g. Hidas et al., 2013). In agreement with experimental results, thermodynamically based estimates of plagioclase-facies recrystallization in Ronda mantle tectonites are within the pressure range of 1.0-0.5 GPa (Hidas et al., 2013). As documented for lherzolites (e.g. Green and Falloon, 1998; Borghini et al., 2010; Fumagalli et al., 2017), the increase of bulk Ab/Di ratio (at fixed bulk X_{Mg} and X_{Cr}) is expected to move toward higher pressure the plagioclase-out curve also in Mg-rich pyroxenites, although it needs to be confirmed by further experiments. In pyroxenites with bulk composition approaching those of mafic rocks (i.e. higher X_{Mg} and Ab/Di ratio), plagioclase stability is further moved to higher pressure, e.g. up to about 2 GPa in olivine-free pyroxenite with Ab/Di ratio of 0.74 (e.g. pyroxenite R130 from Irving, 1974).

Thermodynamic calculations of the plagioclase-out curve have been performed using the Perple_X package (Connolly, 1990; Connolly & Petrini, 2002) in the chemical system Cr-NCFMAS, adopting the updated version of the Holland & Powell (1998) database and solid solution models for Cr-bearing pyroxenes, spinel and garnet (http://www.perplex.ethz.ch). At 1100°C, plagioclase-out curve computed by thermodynamic modeling is located at pressure of about 0.1 GPa lower than the experimentally-derived curve (Fig. 8). As discussed in Borghini et al. (2010), calculations result to be sensitive to the bulk Ab/Di ratio but do not consider the effect of bulk X_{Cr} on the stability of plagioclase-lherzolite assemblages. Pyroxenite GV10 has a very low X_{Cr} that is expected to move the plagioclase-out curve towards higher pressure (Borghini et al., 2010). On the contrary, computed curve is predicted at slightly lower pressure as effect of the low bulk Ab/Di (Table 1). Moreover, we found that the thermodynamic modeling overestimates the solubility of Al in pyroxenes, mostly in clinopyroxene (Fig. 4), and this also could contribute to reduce the field of plagioclase stability.

Results of this work suggest that, at 1100°C, anorthite content in plagioclase decreases with pressure, as observed in experiments on mantle peridotites (Fig. 5). In a recent paper,
Fumagalli et al. (2017) proposed a geobarometer for plagioclase lherzolites based on the equilibrium Fosterite+Anorthite=CaTschermak+Enstatite (FACE geobarometer). Figure 5 shows that the relation between anorthite in plagioclase and X_{Al}^{M1} in clinopyroxene observed in experiments on GV10 pyroxenite is consistent with data on lherzolites. However, application of FACE geobarometer on experiments of the present study provides equilibrium pressures ($0.65 \pm 0.05, 0.68 \pm 0.05, 0.75 \pm 0.05$ GPa) systematically lower than experimental pressures ($0.7, 0.8, 0.9$ GPa), with the highest deviation at the highest pressure. More experimental data on plagioclase-bearing pyroxenites are needed to extend the applicability of the FACE geobarometer to mafic compositions. Noteworthy, few chemical analyses on plagioclase cores from GV10 natural pyroxenite provided an averaged anorthite of 0.58 (Borghini et al., 2016), which is slightly lower than anorthite in experimental samples (Table 7). This is presumably ascribable to the lower temperature of equilibration at plagioclase-facies conditions, inferred for this mantle sequence ($T = 870-930^\circ C$; Borghini et al., 2011), with respect to temperature of experiments ($T = 1100^\circ C$; Table 2), in agreement with the positive correlation between temperature and anorthite in plagioclase (e.g. Fumagalli et al., 2017).

4.2.2. Near-solidus garnet-in curve

The spinel- to garnet-facies transition is one of the major phase boundaries in the Earth’s upper mantle and is relevant to investigate the chemical heterogeneity in the lithospheric mantle. A number of experimental studies have been dedicated to this transition in simplified chemical system, such as MAS and CMAS (for a review see Fumagalli & Klemme, 2015). In the CMAS system, the spinel-garnet boundary is univariant and, at near-solidus pressure, occurs at pressure of 1.8-2.2 GPa (e.g. Milholland & Presnall, 1998; Klemme & O’Neill, 2000; Walter et al., 2002). Addition of Fe to the system tends to shift the garnet-in reaction towards lower pressure (O’Neill, 1981; Irifune et al., 1982; Webb & Wood, 1986; Nickel, 1986; Brey et al., 1999, Girnis et al., 2003) whereas the presence of Cr stabilizes spinel relative to garnet (e.g. Klemme, 2004). In particular, in Cr-bearing chemical systems spinel and garnet coexist until spinel breaks down, which is expected to occur at rather high pressure with depletion degree of peridotite (i.e. higher bulk X_{Cr}, Ziberna et al., 2013). Experimental studies on the stability of hydrated phases in peridotite complex system also documented the spinel-garnet transition at $T < 1100^\circ C$ (e.g. Niida & Green, 1999;
As discussed above, garnet-in curve for the GV10 pyroxenite is located just below 1.5 GPa, in agreement with the garnet appearance in pyroxenites with similar bulk composition (Fig. 7a), at lower pressure than garnet-in curves for all the peridotites (Fig. 9). However, experimental data in anhydrous peridotite system are scarce (Fumagalli & Klemme, 2015), making difficult the comparison with experiments on pyroxenites. Expansion of garnet stability toward lower pressure is promoted by higher FeO and Al₂O₃ contents, as well as the lower X_Cr of the pyroxenites compared to the peridotites. Experimental results of this study confirm that garnet-bearing assemblages in GV10-type pyroxenite bulks are stable within a rather broad interval of pressure in which most of lherzolites are garnet-free, i.e. from 1.5 to about 2.0 GPa. Moreover, phase relations defined by our experiments indicate that the occurrence of garnet in the primary mineral assemblages, inferred for many pyroxenite layers from EL mantle sequences (Borghini et al., 2016), points to pyroxenite emplacement at pressure higher than 1.5 GPa.

The garnet-in curve calculated by Perple_X for the GV10 pyroxenite has a positive slope and, at near-solidus temperature of 1200-1330°C, is located about 0.4 GPa above the curve constrained by experiments (Fig. 9). As we discussed in the previous section, the modeling overestimates the Al solubility in pyroxenes and does not consider Ca in orthopyroxene (Fig. 4). Calculations also tend to underestimate Cr solubility in pyroxenes, as previously documented applying the same thermodynamic calculation on various lherzolites (Ziberna et al. 2013, Borghini et al., 2010, Fumagalli et al., 2017). As a consequence, spinel composition derived by thermodynamic modeling is much Cr-richer than the spinel observed in experiments. This could increase the predicted stability of the spinel over garnet and plagioclase, expanding the field of spinel-facies in Mg-rich pyroxenites, as well as in peridotites, both toward higher and lower pressure (Fig. 8 and 9).

5. Concluding remarks

1) We have experimentally investigated the subsolidus phase relations in secondary-type pyroxenite GV10 from 0.7 to 1.5 GPa, 1100-1230°C. Spinel, olivine and pyroxene are stable within the whole pressure range studied here. Plagioclase is observed from 0.7 to 0.9 GPa and garnet occurs solely at 1.5 GPa.

2) Plagioclase composition is influenced by pressure, with anorthite decreasing from An =
Ca/Ca+Na = 0.70 at 0.7 GPa to An = 0.61 at 0.9 GPa. At 0.7 GPa (1100°C), modal plagioclase produced in the studied pyroxenite by metamorphic reaction is more than twice that found in fertile lherzolites. Spinel modal abundance decreases at decreasing pressure in plagioclase-bearing experiments and at decreasing temperature where it coexists with garnet at 1.5 GPa. Garnet has pyrope-rich compositions and its modal abundance increases with decreasing temperature up to 10 wt. %, at 1150°C.

3) Pyroxenites having bulk composition characterized by high X_Mg and relatively low normative plagioclase, such as the secondary-type pyroxenite GV10, have subsolidus phase relations similar to fertile lherzolite. Plagioclase-out boundary is within the pressure range of many lherzolites and spinel is the unique aluminum phase stable at intermediate pressure (1-1.4 GPa). However, in pyroxenites garnet appears at significantly lower pressure than in lherzolite.

Acknowledgments: Andrea Risplendente is thanked for technical assistance during the work by electron microprobe. This work was financially supported by the Italian Ministry of Education, University and Research (MIUR) [PRIN-2015C5LN35] "Melt rock reaction and melt migration in the MORB mantle through combined natural and experimental studies".

References

Herzberg, C.T. (1976): The lowest pressure pyralspite garnet-forming reaction in CaO-MgO-Al₂O₃-SiO₂; the Seiland/Ariegite subfacies boundary in simple spinel-lherzolites. In

Nickel, K.G. (1986) Phase equilibria in the system SiO₂–MgO–Al₂O₃–CaO–Cr₂O₃ (SMACCr) and their bearing on spinel garnet lherzolite relationships. Neues Jahrbuch für Mineralogie Abhandlungen, 155, 259–287.

FIGURE CAPTIONS

Figure 1. Phase assemblages in pyroxenite GV10 as a function of pressure and temperature. The solidus curve, the plagioclase-out and garnet-in boundaries are also reported.

Figure 2. Representative textures in subsolidus experiments on pyroxenite GV10. (a) Back-scattered electron (BSE) image of experiments GV10-83-23 (0.8 GPa; 1100°C): plagioclase-bearing assemblage is composed of clinopyroxene, orthopyroxene, olivine, plagioclase and Cr-spinel. Black polyhedral elements are pores. (b) BSE image of run GV10-83-12 (1.3 GPa; 1150°C), showing the spinel-facies assemblage. (c) BSE image of run GV10-83-7 (1.5 GPa; 1200°C), in which a coarse seed of spinel is partially substituted by fine-grained garnet-bearing mineral assemblage.

Figure 3. BSE image and X-ray maps for Si, Al and Ca of a representative texture in run GV10-83-7 (1.5 GPa; 1200°C), showing a large garnet seed partially replaced by a newly formed mineral assemblage in which new small spinel and garnet grains are evidenced.

Figure 4. Al content (a.p.f.u.) variations in clinopyroxene (a) and orthopyroxene (b) as a function of pressure. Numbers close to symbols refer to run temperature. The blue and green curves correspond to the Al variation trend in pyroxenes, calculated for the pyroxenite GV10 composition using Perple_X software (Connolly, 1990; Connolly & Petrini, 2002), at 1100 and 1200°C, respectively.

Figure 5. $X_{An} (Ca/(Ca+Na))$ in plagioclase vs. X_{Al}^{MI} in clinopyroxene in experiments on pyroxenite GV10 (blue circles) compared to experimental data from previous studies on lherzolites (FLZ, DLZ and HNa-FLZ; Fumagalli et al., 2017, and references therein).

Figure 6. Modal abundances as a function of pressure in experiments on GV10 at 1100°C (0.7-1.0 GPa), and 1150°C (1.3-1.5 GPa). Modal amounts for experiments at 0.7 GPa, 1100°C, have been computed by using olivine and spinel compositions from experiments at 0.8 GPa, 1100°C. The grey bands represent the pressure of plagioclase-out and garnet-in boundaries for pyroxenite GV10.

Figure 7. Schematic chemography for the system Cr-FN-CMAS, constructed projecting from exchange vectors CaAlNa$_2$Si$_4$O$_{10}$, MgFe$_2$Al and AlCr$_2$ into the compositional space (Mg,Fe)O-
CaO*-SiO$_2$-(Al,Cr)$_2$O$_3$, where CaO* includes the contribution of Ca and Na through the vector CaAlNa$_{1.5}$Si$_{1.5}$. Stars represent the bulk compositions of websterite GV10 (this study), clinopyroxenite DR9734 (Adam et al., 1992) and fertile lherzolite FLZ (Borghini et al., 2010). CIPW normative plagioclase (Pl_{CIPW}) for each bulk composition is reported in empty circles. Compositions of mineral phases are from experiments on websterite GV10 (green circles, this study) and on clinopyroxenite DR9734 (orange circles, Adam et al. 1992).

Figure 8. The plagioclase-out boundary and solidus curves determined by this experimental study on pyroxenite GV10 and previously investigated lherzolites: Hawaiian pyrolite, HPY (Green et al., 1979); fertile and depleted lherzolites, FLZ and DLZ (Borghini et al., 2010); high-Na fertile lherzolite, HNa-FLZ (Fumagalli et al., 2017). The blue dashed curve represents the plagioclase-out boundary derived by thermodynamic calculations using Perple_X package (Connolly, 1990; Connolly & Petrini, 2002), in the model chemical system Cr-NCFMAS. In empty circles the values of normative Ab/Di and X_{Cr} for each bulk composition are indicated.

Figure 9. The garnet-in curves experimentally determined for: pyroxenite GV10 (this study); MORB pyrolite (hMPY) modeled in the hydrous Cr-Ti-bearing system from Niida and Green (1999); model Hawaiian peridotite nodule (PX) studied by Fumagalli & Poli (2005); lherzolite in CMAS system by Klemme & O’Neill (2000) and Walter et al. (2002). The blue dashed curve represents the garnet-in curve derived by thermodynamic calculations using Perple_X package (Connolly, 1990; Connolly & Petrini, 2002), in the model chemical system Cr-NCFMAS.
Subsolidus phase relations in a mantle pyroxenite: an experimental study from 0.7 to 1.5 GPa

Borghini, G. and Fumagalli, P.

Dipartimento di Scienze della Terra, via Botticelli 23, 20133 Milano, Italy

Corresponding Author:

Giulio Borghini
Dipartimento di Scienze della Terra «Ardito Desio»
Università degli Studi di Milano
Via Botticelli 23
20133 Milano (Italy)

Email: giulio.borghini@unimi.it

Keywords:
Pyroxenites, experimental petrology, piston cylinder experiments, garnet stability, plagioclase, spinel, subsolidus assemblage, lithospheric mantle
Abstract

Pyroxenites are diffuse heterogeneity in the upper mantle and represent key lithologies in melting processes and mantle deformation. Mantle peridotites exposed in ultramafic massifs are often veined by pyroxenites. These latter experienced the same metamorphic evolution as host peridotite and may develop substantially different phase assemblages in response to the different bulk composition. Despite of several experimental studies focused on melting relations in pyroxenites, subsolidus phase relations are still poorly known. We provide new experimental constraints on phase stability and mineral chemistry for a natural mantle pyroxenite. Piston cylinder experiments were conducted from 0.7 to 1.5 GPa, 1100-1250°C. Al-rich spinel, clinopyroxene, orthopyroxene and olivine are ubiquitous phases within the whole pressure range investigated. At 1100°C, plagioclase is stable up to 0.9 GPa; anorthite content [An = Ca/(Ca+Na)] decreases as a function of pressure from 0.70 at 0.7 GPa to 0.61 at 0.9 GPa. Maximum plagioclase modal abundance of 14 wt. % forms at 0.7 GPa; this amount is more than the double of that experimentally determined at same P-T in fertile lherzolite (5-6 wt. %). At intermediate pressure (1.0-1.4 GPa), modal spinel is almost constant (4-5 wt. %). A pyrope-rich garnet is stable at 1.5 GPa and its modal abundance increases with decreasing temperature from 5 to 10 wt. %, from 1230°C to 1150°C. Al content in pyroxenes varies significantly across the plagioclase-out and garnet-in transitions and is not pressure-dependent in the spinel pyroxenite field. At 1100°C, the plagioclase-out boundary occurs at comparable pressures in the pyroxenite and in fertile lherzolites. On the contrary, the garnet-in curve is located at significantly lower pressure than for mantle peridotites.
1. Introduction

Pyroxenites are considered as diffuse heterogeneities in the upper mantle (e.g. Bodinier & Godard, 2014). Despite they are volumetrically subordinated with respect to peridotites, pyroxenites play a key role in mantle melting processes (e.g. Hirschmann & Stolper, 1996; Phipps Morgan, 2001; Shorttle & McLennan, 2011; Lambart et al., 2016) and in mantle rheology (e.g. Hidas et al., 2013; Henry et al., 2017). Indeed, they have been invoked as diffuse components in mantle sources of basalts in several magmatic environments (e.g. Sobolev et al., 2005, 2007; Lambart et al., 2013 and references therein), and recognized as catalyst for lithosphere softening (Hidas et al., 2013).

Pyroxene-rich veins or layers embedded in mantle peridotites have been often observed in ophiolitic and orogenic ultramafic massifs (e.g. Bodinier & Godard, 2014 and references therein) and in mantle xenoliths (e.g. Gonzaga et al., 2010; Aulbach & Jacob, 2016) and their origin has been related to high-pressure magmatic segregation, metamorphism and melt-rock reaction processes. Some of these pyroxenites represent long-lived deep mantle heterogeneity that experienced the same metamorphic evolution as the host peridotites at lithospheric mantle levels. However, pyroxenites are expected to develop sensibly different phase assemblages at fixed pressure (P) and temperature (T) conditions as a result of different bulk composition (e.g. Schmadicke, 2000). In particular, the P-T stability of aluminous phases is strongly affected by major elements composition, such as Al\textsubscript{2}O\textsubscript{3}, Cr\textsubscript{2}O\textsubscript{3}, CaO and Na\textsubscript{2}O contents. Experimental studies have suggested that, in pyroxenites garnet appears at significantly lower pressure than in peridotites (e.g. Irving, 1974, Adam et al., 1992), explaining the widespread occurrence of garnet-pyroxenites layers in spinel-bearing peridotites (e.g. Bodinier et al., 1987a and b; Garrido & Bodinier, 1999; Takazawa et al., 1999; Morishita & Arai, 2001; Montanini et al., 2006, 2012; van Acken et al., 2010; Gysi et al., 2011, Montanini & Tribuzio, 2015).

Although subsolidus phase relations in peridotites have been experimentally investigated in both simplified and complex chemical systems (Fumagalli & Klemme, 2015 and references therein), very few experimental works have been focused on subsolidus phase equilibria in pyroxenites and the stability of aluminous phases is still only barely known (e.g. Irving, 1974; Adam et al., 1992).

In this paper we present and discuss the results of subsolidus experiments performed on a natural pyroxenite at pressure from 0.7 to 1.5 GPa and 1100-1230°C. Specific aim is to
investigate the stability of plagioclase, spinel and garnet in this peculiar pyroxenite bulk in order to provide useful geobarometric information for the subsolidus evolution of exhumed ultramafic mantle sectors.

2. Experimental and analytical methods

As starting material we selected an olivine-websterite (GV10), sampled in the ophiolitic mantle sequences from the External Liguride Unit (EL, Northern Apennines, Italy; Borghini et al., 2013, 2016). Pyroxenites from this mantle section occur as cm-thick layers subparallel to the mantle foliation of host peridotite (Rampone et al., 1995; Borghini et al., 2013, 2016). Field, microstructural and geochemical observations indicated that they originated by pyroxenite melt-peridotite interactions, thus supporting its secondary origin (Lambert et al., 2012, 2013). Trace element compositions strongly suggest that many of these pyroxenite layers contained garnet in primary mineral assemblage, thus indicating crystallization at relatively deep mantle level (Borghini et al., 2016). Much later than the pyroxenite emplacement, inferred to have occurred at Ordovician ages (Borghini et al., 2013), this veined mantle sector experienced a subsolidus spinel- to plagioclase-facies decompressional tectonic evolution. This latter was associated to mantle exhumation during the extension of the Jurassic Tethys lithosphere and it is testified by plagioclase-bearing neoblastic assemblages in both peridotite and pyroxenite (Borghini et al., 2011, 2016).

Pyroxenite GV10 well preserves microstructural and geochemical features related to its deep melt-rock reaction origin and, among the EL pyroxenites, it better records chemical imprinting inherited by a garnet-bearing primary assemblage (Borghini et al., 2016).

The major element bulk-rock composition of GV10 and other pyroxenite bulk compositions investigated in previous subsolidus experiments are reported in Table 1. The melting relations of GV10 at 1.0 and 1.5 GPa have been recently investigated (Borghini et al., 2017), and therefore the phase relations at solidus conditions are fully constrained.

A glass has been prepared by complete melting of rock powder at 1500°C in a gas mixing vertical furnace operating at fayalite-magnetite-quartz (FMQ) fO2 and quenched in dry ice (Borghini et al., 2017). To promote the nucleation of the minor phases in subsolidus experiments, powdered glass was seeded with 1 wt% of a 1:1 mixture of
synthetic pure spinel (Al₂O₃ = 71.67 wt%, MgO = 28.33 wt%) and Dora-Maira pyrope (SiO₂ = 44.71 wt%, Al₂O₃ = 25.29 wt%, MgO = 29.99 wt%). The bulk seeds result as follow SiO₂ = 22.36 wt%, Al₂O₃ = 48.48 wt%, MgO = 29.16 wt%. The very low amount of seeds in the starting material (1 wt%) and the occurrence of large unreacted seed relicts in the experiments indicate that seeds addition did not significantly affect the final bulk composition.

Experiments were performed at pressures from 0.7 to 1.5 GPa, and temperatures from 1100°C to 1250°C (Table 2), at the Laboratorio di Petrologia Sperimentale, Dipartimento di Scienze della Terra, University of Milano. Experiments up to 1.0 GPa were carried out in a single-stage piston cylinder; for experiments at higher pressure an end-loaded piston cylinder was used. MgO-Pyrex-Salt assemblies have been adopted and run lasted from 94 to 495 hours (Table 2). Approximately 20 mg of starting material was loaded into a graphite inner capsule (outer diameter 2.8 mm), and then welded into an outer Pt capsule (outer diameter 3.0 mm, length about 7-8 mm). Graphite is used to isolate the sample from the Pt capsule and avoid Fe-loss (Kinzler, 1997; Walter, 1998). The graphite-Pt assembly, combined with pre-conditioning of the starting material at FMQ, maintained the oxygen fugacity close to the C-CO/CO₂ equilibrium (Ulmer & Luth, 1991). In order to ensure nominally anhydrous conditions, the platinum-graphite capsule with the starting material was dried in an oven at 250°C over a night before being rapidly welded shut. The thermocouple tip was separated from the platinum capsule by a 0.5-mm thick hard alumina disc. Assemblies were kept in oven at about 200°C for several hours before running the experiments. Temperature was measured by K-type and S-type thermocouples and is considered to be accurate to ±5°C. According to piston cylinder calibration, pressure uncertainties are assumed to be ±3%.

An initial pressure of 0.25 GPa was applied, then the sample was first heated to 400°C for 10 minutes in order to soften the Pyrex, pressure was raised to the experimental value before reaching the desired temperature.

Capsules were enclosed in epoxy, sectioned lengthwise, polished and carbon-coated. Run products were inspected by back-scattered electron images (BSE) and microanalyses were performed using a JEOL JXA 8200 Superprobe equipped with five WDS-wavelength-dispersive spectrometers and one energy dispersive spectrometer (EDS) at the Dipartimento di Scienze della Terra, University of Milano. Both images and X-ray element maps were extremely useful in textural examination of the experimental charges. Analyses on mineral phases were performed using 1μm beam size and beam conditions of 15 kV and 5 nA. Counting time was 30 s for peak and 10 s for background.
3. Experimental results

3.1. Textures and phase stability

Run products and experimental conditions are reported in Table 2 and summarized in Fig. 1. Textural observations show grain size varying between 2-25μm on average. As expected by the higher temperature, slightly coarser textures have been found in melt-bearing experiments (GV10-83-1 and GV10-83-9, Table 2).

A plagioclase-bearing assemblage composed of clinopyroxene, orthopyroxene, olivine, plagioclase and Cr-spinel is stable from 0.7 to 0.9 GPa at 1100°C. Pyroxenes form the larger grains (up to 25μm), usually showing prismatic habit (Fig. 2a). Olivine occurs as small sized crystals (≤ 5μm), with a rounded habit (Fig. 2a). Plagioclase is homogeneously distributed in the run charges and occurs as subhedral crystals ranging in size from 2 to 8μm (Fig. 2a). Cr-bearing spinel forms thin rims on large relicts of spinel seeds, or occurs as small grains, around 2-3μm, homogeneously distributed within the charge (Fig. 2a). The extremely fine grain size of olivine and spinel in experiment at 0.7 GPa and 1100°C prevented to obtain satisfactory chemical analysis.

A spinel-bearing assemblage made by clinopyroxene, orthopyroxene, olivine and spinel is stable from 1 GPa at 1100-1180°C, to 1.4 GPa at 1150°C. In these experiments, clinopyroxene occurs as large grains of up to 20 μm showing triple junctions (Fig. 2b). Orthopyroxene is easily recognizable in BSE images by its dark grey contrast and shows large prismatic habit (Fig. 2b). Rounded crystals of olivine up to 10μm in size have grey tone intermediate between clinopyroxene and orthopyroxene (Fig. 2b). Spinel is present as small rounded crystals up to 5μm in size.

A garnet-bearing assemblage composed of clinopyroxene, orthopyroxene, olivine, garnet and spinel is stable at 1.5 GPa and 1150-1230°C. These experiments are characterized by textures with grains size ranging between 2 and 10μm. Garnet neoblasts occur as rounded crystals either on or far from the garnet seeds (Fig. 2c), as revealed by Ca-Al X-ray mapping (Fig. 3). Rare spinel is present in garnet-bearing experiments as very small rounded grains (1-3μm), mostly recognized with the support of X-ray mapping (Fig. 3).
3.2. Minerals chemistry

Pyroxenes display significant chemical changes as a function of pressure. *Clinopyroxene* has X_{Mg} value [$X_{Mg} = Mg/(Mg+Fe^{tot})$] between 0.83 and 0.85. In the garnet-bearing experiments ($P > 1.4$ GPa), systematic higher X_{Mg} values reflect the coexistence with garnet having much lower X_{Mg}. The Al content progressively increases with pressure at 1100°C, in the plagioclase-bearing experiments and across the plagioclase-out curve (Fig. 4a). It ranges from 0.216 a.p.f.u. at 0.7 GPa, to 0.355 a.p.f.u. at 1.0 GPa, and is rather constant within the spinel facies (0.351-0.377) (Table 3). A slight Al decrease is also observed as garnet appears at 1.5 GPa, with Al content increasing from 1150 to 1230°C (Table 3 and Fig. 4a). This is in agreement with results reported in experiments on peridotites in both CaO-MgO-Al$_2$O$_3$-SiO$_2$ system (Obata 1976; Herzberg, 1978; Gasparik, 1984) and more complex chemical systems (Borghini et al., 2010). Na content in clinopyroxene increases with pressure from 0.7 to 1.0 GPa at 1100°C, from 0.016 to 0.030 a.p.f.u., and varies between 0.025-0.030 a.p.f.u. in spinel- and garnet-bearing experiments up to 1.5 GPa (Table 3). Ti contents are rather variable, in the range 0.009-0.015 a.p.f.u., without any dependence on pressure and temperature. Cr abundance is always lower than 0.006 a.p.f.u. (Table 3), reflecting the very low Cr content of the bulk composition (Table 1).

Orthopyroxene presents X_{Mg} values from 0.84 to 0.85, with only slight variations as observed in clinopyroxene. The Al content shows a positive correlation with pressure within the stability of plagioclase, increasing from 0.179 to 0.303 a.p.f.u. at 0.8 and 1 GPa respectively. It slightly decreases across the garnet-in curve at 1150°C (Table 4 and Fig. 4b). Ca contents vary between 0.049 and 0.071 a.p.f.u., and Ti abundance is as low as 0.003-0.007 a.p.f.u. (Table 4). As in clinopyroxene, Cr is very low (0.002-0.004 a.p.f.u.).

Olivines have homogeneous compositions with X_{Mg} value [$X_{Mg} = Mg/(Mg+Fe^{tot})$] around 0.83, and very low TiO$_2$ (≤ 0.03 wt%) and Cr$_2$O$_3$ (≤ 0.05 wt%) (Table 5).

Reliable *spinel* compositions have been obtained mostly by combining WDS analysis with X-ray mapping on small rounded neoblasts isolated in the mineral matrix. In cases of very small grains, spinel compositions has been derived by removing the chemical effect of the contaminating host minerals, usually when spinel was included in clinopyroxene. All iron was considered as Fe$^{2+}$ and Fe$^{3+}$ was not calculated, because oxygen fugacity was not buffered. Spinel has X_{Mg} values between 0.63 and 0.68 without any correlation with pressure and temperature (Table 6). Significant variations of X_{Cr} are observed with the highest X_{Cr}
values in experiments within the plagioclase stability field, i.e. 0.079 at 0.8 GPa and 0.062 at 0.9 GPa (Table 6). On the contrary, X_{Cr} value is very low in spinel-facies experiments, ranging 0.021-0.023 a.p.f.u., and increases in garnet-bearing experiments at 1.5 GPa. Furthermore a negative correlation with temperature from 1150 to 1230°C is also shown (Table 6). Ti content is usually lower than 0.006 a.p.f.u. (Table 6).

Despite its small grain size (usually < 10μm), we obtained several good plagioclase analyses with negligible contamination (MgO < 0.2 wt. %). Plagioclase is characterized by anorthite contents [$An = Ca/(Ca+Na)$], which is negatively correlated with pressure (Table 7). At 1100°C, anorthite decreases from 0.70 to 0.61 at pressure increasing from 0.7 to 0.9 GPa, in excellent agreement with the An-pressure dependence documented by subsolidus experiments on lherzolite bulks (Fig. 5; Borghini et al., 2010, 2011; Fumagalli et al., 2017).

Garnets are pyrope-rich with X_{Mg} values of 0.75-0.76 and Ca content positively correlated with temperature ranging from 0.481 a.p.f.u. at 1150°C to 0.525 a.p.f.u. at 1230°C (Table 7).

3.3. Approach to equilibrium

Demonstration of equilibrium through reversal experiments is difficult in case of complex chemical systems and for continuous reactions. However, the approach to equilibrium is carefully assessed through the following observations: (1) the growth of compositionally homogeneous (Fig. 3), chemically unzoned minerals, likely enhanced by long-time duration of experimental runs (see Table 2), (2) systematic and consistent variations in mineral chemistry at different P-T conditions (Fig. 4 and 5), (3) maintenance of constant bulk composition, as supported by mass balance calculations (see below). Long duration of experiments led to well-developed textures with mineral phases homogeneously distributed in the charges. Furthermore, the behaviour of seeds can be taken into account to demonstrate a close approach to equilibrium; when not completely reabsorbed, seeds promoted growth rather than nucleation (Fig. 3).

4. Discussion
4.1. Mineral modal abundance and quantification of the reactions

Phase abundances have been derived by mass balance calculations using a weighted least-squares minimization procedure (Table 8). We included in the mass balance calculations eight major element oxides, SiO$_2$, TiO$_2$, Al$_2$O$_3$, Cr$_2$O$_3$, FeO, MgO, CaO and Na$_2$O. As the ferric/ferrous ratio is unknown in the run charges, all iron has been assumed as Fe$^{2+}$, although moderate Fe$^{3+}$ amount can be contained in spinel. Standard errors on the chemical analyses have been propagated to the phase abundances by the Monte Carlo method. Up to 10000 simulations normally distributed around the average value of each component of each phase have been evaluated and then statistically treated (Fumagalli et al., 2009).

Representative results are shown in Figure 6, in which modal abundances (wt. %) are reported as a function of pressure at 1100 and 1150°C. Modal abundance of plagioclase decreases at increasing pressure until its breakdown at 1 GPa and this is accompanied by modal olivine decrease and increase of spinel and pyroxenes. Quantification of the reaction governing the pressure-dependent plagioclase disappearance in pyroxenite GV10 has been obtained by balancing mineral compositions across the plagioclase-out curve at 1100°C (Fig. 6),

$$0.21\text{pl} + 0.21\text{ol} + 0.20\text{cpx} + 0.35\text{opx} + 0.03\text{spl} = 0.42\text{cpx} + 0.50\text{opx} + 0.08\text{spl}. \quad (1)$$

In the mass balance calculation, the average compositions of reactants (pl, ol, cpx$_1$, opx$_1$, spl$_1$) refer to the phase compositions from run GV10-83-24 (0.9 GPa, 1100°C), and those of products (cpx$_2$, opx$_2$, spl$_2$) from run GV10-83-5 (1.0 GPa, 1100°C; Table 2).

This reaction is similar to that experimentally derived for mantle lherzolites (Borghini et al., 2010), but the higher plagioclase coefficient indicates that more modal plagioclase is involved in the pyroxenite, as expected by the higher bulk Al$_2$O$_3$ and CaO contents. Plagioclase modal abundance of 14 wt. % forms at 0.7 GPa, 1100°C (Table 8); this amount is more than the double of that developed at same P-T conditions in fertile lherzolite (5-6 wt. %, Borghini et al., 2010).

Additionally, relatively high bulk Al$_2$O$_3$ in the pyroxenite results in modal spinel up to 4.7 wt. % (Table 8), almost twice than the spinel amount derived from experiments (2.5 wt. %, Borghini et al., 2010) and thermodynamic calculations (about 2.0 wt. %, Ziberna et al., 2013) on fertile lherzolite bulk compositions. Modal spinel is rather constant within the spinel-bearing experiments (4.1-4.7 wt. %), with no appreciable dependence on pressure (Fig. 6).
At P > 1.4 GPa, 1150°C, the appearance of garnet is coupled with an increase of modal olivine and a decrease of spinel and pyroxenes, as documented at higher pressure in previous experimental works on ultramafic systems (e.g. O’Neill, 1981; Klemme & O’Neill, 2000; Walter et al., 2002; Klemme, 2004). Our mass balance calculations, accounting for mineral composition changes across the garnet-in curve at 1150°C (Fig. 6), yielded the following reaction:

$$0.04\text{spl}_3 + 0.38\text{cpx}_3 + 0.58\text{opx}_3 = 0.30\text{cpx}_4 + 0.51\text{opx}_4 + 0.17\text{grt} + 0.02\text{ol} (+\text{spl}_4).$$ (2)

The reaction (2) has been balanced by using the average phase compositions of reactants (spl$_3$, cpx$_3$, opx$_3$) from run GV10-83-17 (1.4 GPa, 1150°C), and those of products (cpx$_4$, opx$_4$, grt, ol, spl$_4$) from run GV10-83-3 (1.5 GPa, 1150°C; Table 2).

Cr-bearing rims on spinel seeds in garnet-bearing experiments have suggested that spinel is still stable at 1.5 GPa, together with garnet. However, quantification of sp4 in reaction (2) is made difficult by the high uncertainty on spinel composition due to its very small size. Reaction coefficient of sp4 obtained by balancing reaction (2) is well below 0.01 (around 0.002). Ziberna et al. (2013) argued that very low spinel modes in many garnet peridotite xenoliths result from spinel overlooking. This effect is amplified in GV10 garnet pyroxenite having Cr$_2$O$_3$ content ($X_{Cr} = Cr/(Cr+Al) = 0.01$) much lower than lherzolites ($X_{Cr} = 0.07\text{-}0.10$, Borghini et al., 2010).

4.2. The effect of bulk pyroxenite composition on phase stability

Given the large compositional variability of pyroxenites, the bulk composition is relevant in depicting the phase assemblage stable at fixed pressure and temperature.

In peridotites the occurrence of garnet is related to the stability of the olivine-garnet join following the reaction:

$$\text{spinel} + \text{clinopyroxene} + \text{orthopyroxene} = \text{garnet} + \text{olivine}$$ (3)

that defines the spinel to garnet facies transition (e.g. Kushiro & Yoder, 1966; O’Hara et al., 1971; Herzberg, 1978, Fumagalli and Klemme, 2015). It is well established that Cr strongly affects the location of spinel to garnet transition stabilizing spinel at higher pressure.
and resulting in spinel-garnet coexistence (Klemme, 2004). Similarly, the persistence of plagioclase to higher pressure has been established to be sensitive to the normative Ab/Di ratio and X$_{Cr}$ of the bulk (Borghini et al., 2010). In basalt-like compositions, the reaction:

\[
\text{plagioclase} + \text{clinopyroxene} + \text{orthopyroxene} + \text{spinel} = \text{garnet} \quad (4)
\]

determines the lowest possible pressure whereby garnet is stable (e.g. Kushiro & Yoder, 1966; Herzberg, 1976). In this case a pyrope-grossular garnet appears at 1.3-1.5 GPa, 1000°C (Kushiro & Yoder, 1966). Variations in bulk X$_{Mg}$ would however lead to the stability of an almandine-grossular garnet as breakdown product of olivine + plagioclase assemblages at much lower pressure, i.e. 0.7 GPa, 1000°C (Green & Hibberson, 1970).

The present study further shows the effect of bulk composition on the stable assemblage. Phase assemblages at 1 GPa, 1000-1100°C are plotted into the compositional space (Mg,Fe)O-CaO*-SiO$_2$-(Al,Cr)$_2$O$_3$ for the system Cr-FNCMAS, constructed projecting mineral compositions from the exchange vectors CaAlNa$_{-1}$Si$_{-1}$, MgFe$_{-1}$ and AlCr$_{-1}$. CaO* includes the contribution of Ca and Na through the vector CaAlNa$_{-1}$Si$_{-1}$. The bulk compositions are indicated together with the amount of normative plagioclase (Pl$_{\text{CIPW}}$). GV10 presents the same phase assemblage, olivine, orthopyroxene, clinopyroxene and spinel of a fertile lherzolite (FLZ). The higher normative Pl$_{\text{CIPW}}$ results in a higher modal abundance of clinopyroxene (and spinel) as the bulk approaches the orthopyroxene-clinopyroxene-spinel plane. At further increase of Pl$_{\text{CIPW}}$ as observed in pyroxenite DR9734 (Pl$_{\text{CIPW}}$ = 39.1), the stable assemblage (orange star in Figure 7), at the same PT conditions is plagioclase, spinel clinopyroxene and garnet (Adam et al., 1992). It should be noted that the stable garnet in pyroxenite DR9734 has, as expected, slightly lower X$_{Mg}$ (pyrope = 0.53 molar fraction) and higher Ca (grossular = 0.19) with respect to garnets stabilized in GV10 pyroxenite at higher pressure (at 1.5 GPa, 1150 °C, pyrope = 0.64, grossular = 0.14). Its occurrence is related to reaction (4).

In general, the clinopyroxene-orthopyroxene-spinel plane acts as a barrier separating olivine-bearing from olivine-free assemblages, the latter being able to stabilize associations of garnet and spinel, as observed in websterite R394 of Irving (1974), or garnet, spinel and plagioclase, as in clinopyroxenites DR9734 (Adam et al., 1992) and R392 (Irving, 1974). GV10 pyroxenite bulk plots near this barrier and within the spinel-facies low modal olivine is stabilized (approx. 5 wt. %, Table 8). This confutes the lacking of olivine in the
spinel-bearing assemblage estimated by using the composition of the natural mineral phases (Borghini et al., 2016), indicating that for GV10 bulk olivine is stable, at least, from 0.7 to 1.5 GPa.

In the following sections we will discuss plagioclase-out boundary, i.e. reaction (1) and garnet-in curve, i.e. reaction (2), as derived by present experiments in relation with peridotite bulk compositions.

4.2.1. Near-solidus plagioclase-out curve

Defining the pressure limit of plagioclase stability in pyroxenites is useful to obtain information on geobarometric evolution of mantle rocks because pyroxenites are often associated to peridotites in ultramafic massifs.

Experimental studies in simplified chemical system CaO-MgO-Al_2O_3-SiO_2 (CMAS) have indicated that the stability of plagioclase lherzolite is limited at pressure below 1 GPa (e.g. Kushiro & Yoder, 1966; Obata, 1976; Gasparik, 1984). Addition of Na to the CMAS system makes the plagioclase-in reaction divariant and extends the pressure stability of plagioclase to pressure higher than 1 GPa (e.g. Walter & Presnall, 1994).

Subsolidus experiments on peridotite modeled in complex chemical systems revealed that the pressure of plagioclase-out curve is strongly influenced by the bulk Ab/Di ratio and X_Cr (e.g. Green & Hibberson, 1970; Green & Falloon, 1998; Borghini et al., 2010). Higher bulk Ab/Di ratio leads to crystallization of a more albitic plagioclase, expanding the plagioclase stability towards higher pressure (e.g. Green & Hibberson, 1970; Walter & Presnall, 1994; Green & Falloon, 1998; Falloon et al., 1999; Borghini et al., 2010; Till et al., 2012; Laporte et al., 2014; Fumagalli et al., 2017). At near-solidus temperatures, plagioclase persists up to 1.3 GPa in fertile lherzolites (e.g. Falloon et al., 1999; Laporte et al., 2014). Moreover, the plagioclase-out boundary is also sensitive to the bulk X_Cr (or the chromite/anorthite normative ratio), which acts in favor of spinel expanding its stability toward lower pressure at the expense of plagioclase (Borghini et al., 2010).

In Figure 8 the plagioclase-out boundary derived for pyroxenite GV10 is compared with equilibria determined for different peridotite bulks in complex chemical systems, at the same temperatures. The high-pressure limit of plagioclase stability in GV10 occurs within the pressure range of the boundaries determined for these lherzolites. In particular, at 1100°C the plagioclase-out curve of GV10 is very close to that of the Na-rich lherzolite HNa-FLZ.
recently investigated by Fumagalli et al. (2017) (Fig. 8). This further supports that the effect of the much lower bulk X_{Cr} of pyroxenite (0.01) is counterbalanced by its Ab/Di ratio (0.11) significantly lower than those of some mantle peridotites (Ab/Di = 0.15-0.30; Green & Falloon, 1998; Borghini et al., 2010).

As a result, plagioclase-facies recrystallization is expected to occur at very close depths or, possibly, simultaneously in fertile lherzolites and in high-Mg pyroxenites, such as pyroxenite GV10 and R934 (Irving, 1974). This is consistent with the observations in ultramafic massifs where both pyroxenites and peridotites may be partially re-equilibrated at plagioclase-facies conditions. This is the case of mantle sequences from EL ophiolites (Rampone et al., 1995; Montanini et al., 2006; Borghini et al., 2010, 2011, 2013, 2016), as well as, mantle tectonites in Ronda (e.g. Hidas et al., 2013). In agreement with experimental results, thermodynamically based estimates of plagioclase-facies recrystallization in Ronda mantle tectonites are within the pressure range of 1.0-0.5 GPa (Hidas et al., 2013). As documented for lherzolites (e.g. Green and Falloon, 1998; Borghini et al., 2010; Fumagalli et al., 2017), the increase of bulk Ab/Di ratio (at fixed bulk X_{Mg} and X_{Cr}) is expected to move toward higher pressure the plagioclase-out curve also in Mg-rich pyroxenites, although it needs to be confirmed by further experiments. In pyroxenites with bulk composition approaching those of mafic rocks (i.e. higher X_{Mg} and Ab/Di ratio), plagioclase stability is further moved to higher pressure, e.g. up to about 2 GPa in olivine-free pyroxenite with Ab/Di ratio of 0.74 (e.g. pyroxenite R130 from Irving, 1974).

Thermodynamic calculations of the plagioclase-out curve have been performed using the Perple_X package (Connolly, 1990; Connolly & Petrini, 2002) in the chemical system Cr-NCFMAS, adopting the updated version of the Holland & Powell (1998) database and solid solution models for Cr-bearing pyroxenes, spinel and garnet (http://www.perplex.ethz.ch). At 1100°C, plagioclase-out curve computed by thermodynamic modeling is located at pressure of about 0.1 GPa lower than the experimentally-derived curve (Fig. 8). As discussed in Borghini et al. (2010), calculations result to be sensitive to the bulk Ab/Di ratio but do not consider the effect of bulk X_{Cr} on the stability of plagioclase-lherzolite assemblages. Pyroxenite GV10 has a very low X_{Cr} that is expected to move the plagioclase-out curve towards higher pressure (Borghini et al., 2010). On the contrary, computed curve is predicted at slightly lower pressure as effect of the low bulk Ab/Di (Table 1). Moreover, we found that the thermodynamic modeling overestimates the solubility of Al in pyroxenes, mostly in clinopyroxene (Fig. 4), and this also could contribute to reduce the field of plagioclase stability.
Results of this work suggest that, at 1100°C, anorthite content in plagioclase decreases with pressure, as observed in experiments on mantle peridotites (Fig. 5). In a recent paper, Fumagalli et al. (2017) proposed a geobarometer for plagioclase lherzolites based on the equilibrium Fosterite+Anorthite=CaTschermak+Enstatite (FACE geobarometer). Figure 5 shows that the relation between anorthite in plagioclase and X_{Al}^{M1} in clinopyroxene observed in experiments on GV10 pyroxenite is consistent with data on lherzolites. However, application of FACE geobarometer on experiments of the present study provides equilibrium pressures (0.65 ± 0.05, 0.68 ± 0.05, 0.75 ± 0.05 GPa) systematically lower than experimental pressures (0.7, 0.8, 0.9 GPa), with the highest deviation at the highest pressure. More experimental data on plagioclase-bearing pyroxenites are needed to extend the applicability of the FACE geobarometer to mafic compositions. Noteworthy, few chemical analyses on plagioclase cores from GV10 natural pyroxenite provided an averaged anorthite of 0.58 (Borghini et al., 2016), which is slightly lower than anorthite in experimental samples (Table 7). This is presumably ascribable to the lower temperature of equilibration at plagioclase-facies conditions, inferred for this mantle sequence ($T = 870$-930°C; Borghini et al., 2011), with respect to temperature of experiments ($T = 1100^\circ$C; Table 2), in agreement with the positive correlation between temperature and anorthite in plagioclase (e.g. Fumagalli et al., 2017).

4.2.2. Near-solidus garnet-in curve

The spinel- to garnet-facies transition is one of the major phase boundaries in the Earth’s upper mantle and is relevant to investigate the chemical heterogeneity in the lithospheric mantle. A number of experimental studies have been dedicated to this transition in simplified chemical system, such as MAS and CMAS (for a review see Fumagalli & Klemme, 2015). In the CMAS system, the spinel-garnet boundary is univariant and, at near-solidus pressure, occurs at pressure of 1.8-2.2 GPa (e.g. Milholland & Presnall, 1998; Klemme & O’Neill, 2000; Walter et al., 2002). Addition of Fe to the system tends to shift the garnet-in reaction towards lower pressure (O’Neill, 1981; Irifune et al., 1982; Webb & Wood, 1986; Nickel, 1986; Brey et al., 1999, Girdenis et al., 2003) whereas the presence of Cr stabilizes spinel relative to garnet (e.g. Klemme, 2004). In particular, in Cr-bearing chemical systems spinel and garnet coexist until spinel breaks down, which is expected to occur at rather high pressure with depletion degree of peridotite (i.e. higher bulk X_{Cr}, Ziberna et al.,
Experimental studies on the stability of hydrated phases in peridotite complex system also documented the spinel-garnet transition at \(T < 1100^\circ\text{C} \) (e.g. Niida & Green, 1999; Fumagalli & Poli, 2005).

As discussed above, garnet-in curve for the GV10 pyroxenite is located just below 1.5 GPa, in agreement with the garnet appearance in pyroxenites with similar bulk composition (Fig. 7a), at lower pressure than garnet-in curves for all the peridotites (Fig. 9). However, experimental data in anhydrous peridotite system are scarce (Fumagalli & Klemme, 2015), making difficult the comparison with experiments on pyroxenites. Expansion of garnet stability toward lower pressure is promoted by higher FeO and \(\text{Al}_2\text{O}_3 \) contents, as well as the lower \(X_{\text{Cr}} \) of the pyroxenites compared to the peridotites. Experimental results of this study confirm that garnet-bearing assemblages in GV10-type pyroxenite bulks are stable within a rather broad interval of pressure in which most of lherzolites are garnet-free, i.e. from 1.5 to about 2.0 GPa. Moreover, phase relations defined by our experiments indicate that the occurrence of garnet in the primary mineral assemblages, inferred for many pyroxenite layers from EL mantle sequences (Borghini et al., 2016), points to pyroxenite emplacement at pressure higher than 1.5 GPa.

The garnet-in curve calculated by Perple_X for the GV10 pyroxenite has a positive slope and, at near-solidus temperature of 1200-1330°C, is located about 0.4 GPa above the curve constrained by experiments (Fig. 9). As we discussed in the previous section, the modeling overestimates the Al solubility in pyroxenes and does not consider Ca in orthopyroxene (Fig. 4). Calculations also tend to underestimate Cr solubility in pyroxenes, as previously documented applying the same thermodynamic calculation on various lherzolites (Ziberna et al. 2013, Borghini et al., 2010, Fumagalli et al., 2017). As a consequence, spinel composition derived by thermodynamic modeling is much Cr-richer than the spinel observed in experiments. This could increase the predicted stability of the spinel over garnet and plagioclase, expanding the field of spinel-facies in Mg-rich pyroxenites, as well as in peridotites, both toward higher and lower pressure (Fig. 8 and 9).

5. Concluding remarks

1) We have experimentally investigated the subsolidus phase relations in secondary-type pyroxenite GV10 from 0.7 to 1.5 GPa, 1100-1230°C. Spinel, olivine and pyroxene are stable within the whole pressure range studied here. Plagioclase is observed from 0.7 to 0.9 GPa and
garnet occurs solely at 1.5 GPa.

2) Plagioclase composition is influenced by pressure, with anorthite decreasing from An = Ca/Ca+Na = 0.70 at 0.7 GPa to An = 0.61 at 0.9 GPa. At 0.7 GPa (1100°C), modal plagioclase produced in the studied pyroxenite by metamorphic reaction is more than twice that found in fertile lherzolites. Spinel modal abundance decreases at decreasing pressure in plagioclase-bearing experiments and at decreasing temperature where it coexists with garnet at 1.5 GPa. Garnet has pyrope-rich compositions and its modal abundance increases with decreasing temperature up to 10 wt. %, at 1150°C.

3) Pyroxenites having bulk composition characterized by high X_{Mg} and relatively low normative plagioclase, such as the secondary-type pyroxenite GV10, have subsolidus phase relations similar to fertile lherzolite. Plagioclase-out boundary is within the pressure range of many lherzolites and spinel is the unique aluminum phase stable at intermediate pressure (1-1.4 GPa). However, in pyroxenites garnet appears at significantly lower pressure than in lherzolite.

Acknowledgments: Andrea Risplendente is thanked for technical assistance during the work by electron microprobe. This work was financially supported by the Italian Ministry of Education, University and Research (MIUR) [PRIN-2015C5LN35] "Melt rock reaction and melt migration in the MORB mantle through combined natural and experimental studies".

References

Walter, M., Katsura, T., Kubo, A., Shinmei, T., Nishikawa, O., Ito, E., Lesher, C. &

FIGURE CAPTIONS

Figure 1. Phase assemblages in pyroxenite GV10 as a function of pressure and temperature. The solidus curve, the plagioclase-out and garnet-in boundaries are also reported.

Figure 2. Representative textures in subsolidus experiments on pyroxenite GV10. (a) Back-scattered electron (BSE) image of experiments GV10-83-23 (0.8 GPa; 1100°C): plagioclase-bearing assemblage is composed of clinopyroxene, orthopyroxene, olivine, plagioclase and Cr-spinel. Black polyhedral elements are pores. (b) BSE image of run GV10-83-12 (1.3 GPa; 1150°C), showing the spinel-facies assemblage. (c) BSE image of run GV10-83-7 (1.5 GPa; 1200°C), in which a coarse seed of spinel is partially substituted by fine-grained garnet-bearing mineral assemblage.

Figure 3. BSE image and X-ray maps for Si, Al and Ca of a representative texture in run GV10-83-7 (1.5 GPa; 1200°C), showing a large garnet seed partially replaced by a newly formed mineral assemblage in which new small spinel and garnet grains are evidenced.

Figure 4. Al content (a.p.f.u.) variations in clinopyroxene (a) and orthopyroxene (b) as a function of pressure. Numbers close to symbols refer to run temperature. The blue and green curves correspond to the Al variation trend in pyroxenes, calculated for the pyroxenite GV10 composition using Perple_X software (Connolly, 1990; Connolly & Petrini, 2002), at 1100 and 1200°C, respectively.

Figure 5. X$_{An}$ (Ca/(Ca+Na)) in plagioclase vs. X$_{Al}^{MI}$ in clinopyroxene in experiments on pyroxenite GV10 (blue circles) compared to experimental data from previous studies on lherzolites (FLZ, DLZ and HNa-FLZ; Fumagalli et al., 2017, and references therein).

Figure 6. Modal abundances as a function of pressure in experiments on GV10 at 1100°C (0.7-1.0 GPa), and 1150°C (1.3-1.5 GPa). Modal amounts for experiments at 0.7 GPa, 1100°C, have been computed by using olivine and spinel compositions from experiments at 0.8 GPa, 1100°C. The grey bands represent the pressure of plagioclase-out and garnet-in boundaries for pyroxenite GV10.
Figure 7. Schematic chemography for the system Cr-FNCMAS, constructed projecting from exchange vectors $\text{CaAlNa}_1\text{Si}_1$, MgFe_1Cr_1 into the compositional space $(\text{Mg,Fe})\text{O}-\text{CaO}^*-(\text{Si,Al,Cr,Na})_2\text{O}_3$, where CaO^* includes the contribution of Ca and Na through the vector $\text{CaAlNa}_1\text{Si}_1$. Stars represent the bulk compositions of websterite GV10 (this study), clinopyroxenite DR9734 (Adam et al., 1992) and fertile lherzolite FLZ (Borghini et al., 2010). CIPW normative plagioclase (Pl_{CIPW}) for each bulk composition is reported in empty circles. Compositions of mineral phases are from experiments on websterite GV10 (green circles, this study) and on clinopyroxenite DR9734 (orange circles, Adam et al. 1992).

Figure 8. The plagioclase-out boundary and solidus curves determined by this experimental study on pyroxenite GV10 and previously investigated lherzolites: Hawaiian pyrolite, HPY (Green et al., 1979); fertile and depleted lherzolites, FLZ and DLZ (Borghini et al., 2010); high-Na fertile lherzolite, HNa-FLZ (Fumagalli et al., 2017). The blue dashed curve represents the plagioclase-out boundary derived by thermodynamic calculations using Perple_X package (Connolly, 1990; Connolly & Petrini, 2002), in the model chemical system Cr-NCFMAS. In empty circles the values of normative Ab/Di and X_{Cr} for each bulk composition are indicated.

Figure 9. The garnet-in curves experimentally determined for: pyroxenite GV10 (this study); MORB pyrolite (hMPY) modeled in the hydrous Cr-Ti-bearing system from Niida and Green (1999); model Hawaiian peridotite nodule (PX) studied by Fumagalli & Poli (2005); lherzolite in CMAS system by Klemme & O’Neill (2000) and Walter et al. (2002). The blue dashed curve represents the garnet-in curve derived by thermodynamic calculations using Perple_X package (Connolly, 1990; Connolly & Petrini, 2002), in the model chemical system Cr-NCFMAS.
Figure 1

GV10

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td>1200</td>
</tr>
<tr>
<td>1.25</td>
<td>1300</td>
</tr>
<tr>
<td>1.5</td>
<td>+ glass</td>
</tr>
</tbody>
</table>

Solidus

spl, grt - pyroxenite

spl-pyroxenite

pl, spl - pyroxenite

+ glass
Figure 3

BSE

new spinels

Si

grt-seed

20μm

Al

new grt

new spinels

Ca
Figure 6

- **P (GPa)**
- **Modal abundance (wt%)**
- **CPX**
- **OL**
- **OPX**
- **PL**
- **SPL**

- **1150°C plagioclase-out**
- **1100°C garnet-in**

- **GRT**
- **CPX**
- **OPX**
- **OL**
- **PL**
- **SPL**
1 GPa, 1000 - 1100°C

Figure 7
Figure 9
Table 1. Compositions of starting material of this work and previous studies

<table>
<thead>
<tr>
<th></th>
<th>GV10*</th>
<th>GV10</th>
<th>DR9734</th>
<th>DR10165</th>
<th>R392</th>
<th>R394</th>
<th>R130</th>
<th>R698</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.54</td>
<td>47.57</td>
<td>47.31</td>
<td>46.02</td>
<td>46.54</td>
<td>45.73</td>
<td>47.24</td>
<td>50.67</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.45</td>
<td>0.45</td>
<td>0.23</td>
<td>0.39</td>
<td>0.45</td>
<td>0.69</td>
<td>2.10</td>
<td>0.79</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.27</td>
<td>10.39</td>
<td>14.95</td>
<td>13.57</td>
<td>15.48</td>
<td>14.29</td>
<td>15.71</td>
<td>17.02</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.16</td>
<td>0.15</td>
<td>0.09</td>
<td>0.41</td>
<td>0.16</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>7.23</td>
<td>6.99</td>
<td>6.52</td>
<td>7.61</td>
<td>6.29</td>
<td>5.26</td>
<td>11.49</td>
<td>8.46</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
<td>0.18</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
<td>0.16</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>19.15</td>
<td>19.23</td>
<td>12.83</td>
<td>19.58</td>
<td>15.38</td>
<td>18.25</td>
<td>8.21</td>
<td>8.66</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.50</td>
<td>0.48</td>
<td>1.44</td>
<td>0.63</td>
<td>0.96</td>
<td>0.81</td>
<td>3.20</td>
<td>2.82</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.10</td>
<td>0.08</td>
<td>0.03</td>
<td>0.00</td>
<td>0.26</td>
<td>0.04</td>
<td>0.24</td>
<td>0.31</td>
</tr>
<tr>
<td>Tot.</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>X_Mg</td>
<td>0.83</td>
<td>0.83</td>
<td>0.78</td>
<td>0.82</td>
<td>0.81</td>
<td>0.86</td>
<td>0.56</td>
<td>0.65</td>
</tr>
<tr>
<td>X_Cr</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

(100%) All compositions are normalized to a sum of 100%. In the third column, in parentheses we report the errors (1σ) given in terms of least unit cited; e.g. 47.57 (12) and 0.45 (6) represent 47.57 ± 0.12 and 0.45 ± 0.06, respectively.

(*) Major element analysis by lithium metaborate/tetraborate fusion ICP on powder samples GV10 (Borghini et al., 2016).

CIPW norms (%mol proportions) are also reported. Ab, albite; An, anorthite; Di, diopside; Hy, hypersthene; Ol, olivine; Il, ilmenite; Cm, chromite; Or, orthoclase; Ne, nepheline.
Table 2. Experimental run conditions and products

<table>
<thead>
<tr>
<th>Run</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>t (h)</th>
<th>Run products</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV10-83-25</td>
<td>0.7</td>
<td>1100</td>
<td>416</td>
<td>cpx, opx, sp, plag, ol</td>
</tr>
<tr>
<td>GV10-83-23</td>
<td>0.8</td>
<td>1100</td>
<td>495</td>
<td>cpx, opx, sp, plag, ol</td>
</tr>
<tr>
<td>GV10-83-24</td>
<td>0.9</td>
<td>1100</td>
<td>453</td>
<td>cpx, opx, sp, plag, ol</td>
</tr>
<tr>
<td>GV10-83-5</td>
<td>1</td>
<td>1100</td>
<td>408</td>
<td>cpx, opx, sp, ol</td>
</tr>
<tr>
<td>GV10-83-4*</td>
<td>1</td>
<td>1180</td>
<td>240</td>
<td>cpx, opx, sp, ol</td>
</tr>
<tr>
<td>GV10-83-1*</td>
<td>1</td>
<td>1200</td>
<td>120</td>
<td>glass, cpx, ol, opx, sp</td>
</tr>
<tr>
<td>GV10-83-12</td>
<td>1.3</td>
<td>1150</td>
<td>336</td>
<td>cpx, opx, sp, ol</td>
</tr>
<tr>
<td>GV10-83-17</td>
<td>1.4</td>
<td>1150</td>
<td>311</td>
<td>cpx, opx, sp, ol</td>
</tr>
<tr>
<td>GV10-83-3</td>
<td>1.5</td>
<td>1150</td>
<td>357</td>
<td>cpx, opx, gnt, sp, ol</td>
</tr>
<tr>
<td>GV10-83-7</td>
<td>1.5</td>
<td>1200</td>
<td>162</td>
<td>cpx, opx, gnt, sp, ol</td>
</tr>
<tr>
<td>GV10-83-16*</td>
<td>1.5</td>
<td>1230</td>
<td>94</td>
<td>cpx, opx, ol, sp, gnt</td>
</tr>
<tr>
<td>GV10-83-9*</td>
<td>1.5</td>
<td>1250</td>
<td>155</td>
<td>glass, cpx, ol, opx, sp</td>
</tr>
</tbody>
</table>

(*) from Borghini et al. (2017)
Table 3. Average composition of clinopyroxenes.

<table>
<thead>
<tr>
<th>Run</th>
<th>P(GPa)</th>
<th>TiO$_2$</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Cr$_2$O$_3$</th>
<th>MgO</th>
<th>FeO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>Fe$_{tot}$</th>
<th>Mg$_{tot}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0.1</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0.1</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>10.0</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0.1</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>15.0</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0.1</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses correspond to 1σ standard deviations. Cations are calculated on the basis of 6 oxygens and all Fe = Fe$^{2+}$.

*Mean = Mg/(Mg+Fe$^{2+}$)
Mg \(\approx \) Fe

| Cations | Calculated on the basis of 6 oxygens and all ||
|---------|-----------------------------------|
| Na | 0.003 (0.004) |
| Ca | 0.267 (0.007) |
| Ti | 0.005 (0.003) |
| Fe | 0.004 (0.002) |
| Cr | 0.003 (0.001) |
| Mg | 0.849 (0.004) |

| Numbers in parentheses correspond to 1sigma standard deviations. | | |
|--|---|
| Mg \(\approx \) Fe | 0.849 (0.004) |
| Ca | 0.267 (0.007) |
| Ti | 0.005 (0.003) |
| Fe | 0.004 (0.002) |
| Cr | 0.003 (0.001) |

<table>
<thead>
<tr>
<th>Table 4. Average composition of orthopyroxenes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg (\approx) Fe</td>
<td>0.849 (0.004)</td>
</tr>
<tr>
<td>Ca</td>
<td>0.267 (0.007)</td>
</tr>
<tr>
<td>Ti</td>
<td>0.005 (0.003)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.004 (0.002)</td>
</tr>
<tr>
<td>Cr</td>
<td>0.003 (0.001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Na</th>
<th>0.003 (0.004)</th>
<th>Mg</th>
<th>0.849 (0.004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>0.267 (0.007)</td>
<td>Ti</td>
<td>0.005 (0.003)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.004 (0.002)</td>
<td>Cr</td>
<td>0.003 (0.001)</td>
</tr>
</tbody>
</table>
Table 5. Average compositions of olivines

<table>
<thead>
<tr>
<th>Run</th>
<th>P(GPa)</th>
<th>T(°C)</th>
<th>No. An</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Cr$_2$O$_3$</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
<th>Cat.sum</th>
<th>X$_{Mg}$</th>
<th>X${Mg}$=Mg/(Mg+Fe${tot}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV10-83</td>
<td>0.8</td>
<td>1100</td>
<td>8</td>
<td>39.53</td>
<td>0.03</td>
<td>0.02</td>
<td>15.24</td>
<td>44.50</td>
<td>0.38</td>
<td>2.997</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>1100</td>
<td>4</td>
<td>40.05</td>
<td>0.03</td>
<td>0.02</td>
<td>15.35</td>
<td>43.72</td>
<td>0.39</td>
<td>2.997</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1100</td>
<td>5</td>
<td>39.46</td>
<td>0.03</td>
<td>0.02</td>
<td>15.66</td>
<td>43.64</td>
<td>0.39</td>
<td>2.997</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1180</td>
<td>10</td>
<td>39.75</td>
<td>0.03</td>
<td>0.02</td>
<td>15.60</td>
<td>43.95</td>
<td>0.41</td>
<td>3.031</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1150</td>
<td>9</td>
<td>39.67</td>
<td>0.03</td>
<td>0.02</td>
<td>15.62</td>
<td>43.79</td>
<td>0.41</td>
<td>3.031</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1150</td>
<td>7</td>
<td>39.59</td>
<td>0.03</td>
<td>0.02</td>
<td>15.61</td>
<td>43.83</td>
<td>0.37</td>
<td>3.031</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1200</td>
<td>9</td>
<td>39.93</td>
<td>0.03</td>
<td>0.02</td>
<td>15.31</td>
<td>44.00</td>
<td>0.42</td>
<td>3.031</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1230</td>
<td>6</td>
<td>40.42</td>
<td>0.03</td>
<td>0.02</td>
<td>15.29</td>
<td>43.86</td>
<td>0.13</td>
<td>3.031</td>
<td>0.833</td>
<td>Mg/(Mg+Fe$_{tot}$)</td>
</tr>
</tbody>
</table>

Numbers in parentheses correspond to 1σ standard deviations. Cations are calculated on the basis of 4 oxygens and all Fe = Fe$^{2+}$.

X$_{Mg}$=Mg/(Mg+Fe$_{tot}$), Numbers in parentheses correspond to 1σ standard deviations. Cations are calculated on the basis of 4 oxygens and all Fe = Fe$^{2+}$.

Ca 0.158, Mg 0.767, Si 0.052. Numbers in parentheses correspond to 1σ standard deviations. Cations are calculated on the basis of 4 oxygens and all Fe = Fe$^{2+}$.

Table 6. Average compositions of spinels

<table>
<thead>
<tr>
<th>Run</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>No. An</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO</th>
<th>MgO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0100</td>
<td>0.8</td>
<td>1100</td>
<td>4</td>
<td>0.14</td>
<td>0.14</td>
<td>56.55</td>
<td>7.23</td>
<td>17.92</td>
<td>17.92</td>
<td>99.89</td>
</tr>
<tr>
<td>G0200</td>
<td>0.9</td>
<td>1100</td>
<td>5</td>
<td>0.46</td>
<td>0.18</td>
<td>58.35</td>
<td>5.78</td>
<td>17.90</td>
<td>17.38</td>
<td>100.05</td>
</tr>
<tr>
<td>G0300</td>
<td>1</td>
<td>1100</td>
<td>4</td>
<td>0.27</td>
<td>0.19</td>
<td>64.33</td>
<td>2.24</td>
<td>15.89</td>
<td>17.30</td>
<td>100.20</td>
</tr>
<tr>
<td>G0400</td>
<td>1.1</td>
<td>1180</td>
<td>10</td>
<td>0.34</td>
<td>0.17</td>
<td>63.42</td>
<td>2.11</td>
<td>15.05</td>
<td>17.78</td>
<td>98.87</td>
</tr>
<tr>
<td>G0500</td>
<td>1.1</td>
<td>1150</td>
<td>5</td>
<td>0.13</td>
<td>0.22</td>
<td>62.48</td>
<td>2.16</td>
<td>17.25</td>
<td>17.34</td>
<td>99.58</td>
</tr>
<tr>
<td>G0600</td>
<td>1.3</td>
<td>1150</td>
<td>13</td>
<td>0.26</td>
<td>0.18</td>
<td>62.11</td>
<td>1.96</td>
<td>17.68</td>
<td>17.24</td>
<td>99.33</td>
</tr>
<tr>
<td>G0700</td>
<td>1.4</td>
<td>1200</td>
<td>4</td>
<td>0.32</td>
<td>0.24</td>
<td>60.35</td>
<td>4.96</td>
<td>17.13</td>
<td>16.93</td>
<td>99.91</td>
</tr>
<tr>
<td>G0800</td>
<td>1.5</td>
<td>1230</td>
<td>5</td>
<td>0.27</td>
<td>0.16</td>
<td>61.58</td>
<td>3.68</td>
<td>17.16</td>
<td>17.16</td>
<td>99.77</td>
</tr>
</tbody>
</table>

Cations are calculated on the basis of 4 oxygens and all Fe = Fe²⁺.

\[
\text{X}_\text{Mg} = \frac{\text{Mg}}{\text{Mg} + \text{Fe}_{\text{tot}}}
\]

\[
\text{X}_\text{Cr} = \frac{\text{Cr}}{\text{Cr} + \text{Al}}
\]

Numbers in parentheses are 1σ standard deviations.
<table>
<thead>
<tr>
<th>Run:</th>
<th>GV10-83-25</th>
<th>GV10-83-23</th>
<th>GV10-83-24</th>
<th>GV10-83-3</th>
<th>GV10-83-7</th>
<th>GV10-83-16*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(GPa)</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>T(°C)</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1150</td>
<td>1200</td>
<td>1230</td>
</tr>
<tr>
<td>No. An</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>SiO₂</td>
<td>49.63 (0.87)</td>
<td>52.54 (0.40)</td>
<td>53.48 (0.07)</td>
<td>SiO₂</td>
<td>43.14 (0.22)</td>
<td>43.22 (0.26)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.04 (0.02)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>TiO₂</td>
<td>0.22 (0.05)</td>
<td>0.22 (0.04)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>32.13 (0.57)</td>
<td>29.43 (0.38)</td>
<td>29.35 (0.74)</td>
<td>Al₂O₃</td>
<td>22.34 (0.24)</td>
<td>21.83 (0.82)</td>
</tr>
<tr>
<td>FeO</td>
<td>0.18 (0.07)</td>
<td>0.06 (0.06)</td>
<td>0.11 (0.02)</td>
<td>FeO</td>
<td>0.16 (0.05)</td>
<td>0.16 (0.04)</td>
</tr>
<tr>
<td>MgO</td>
<td>0.16 (0.09)</td>
<td>0.15 (0.07)</td>
<td>0.16 (0.05)</td>
<td>MgO</td>
<td>10.26 (0.44)</td>
<td>10.33 (1.22)</td>
</tr>
<tr>
<td>CaO</td>
<td>14.31 (0.32)</td>
<td>14.49 (0.34)</td>
<td>12.70 (0.33)</td>
<td>CaO</td>
<td>18.35 (0.61)</td>
<td>18.29 (0.83)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.44 (0.18)</td>
<td>3.79 (0.18)</td>
<td>4.43 (0.13)</td>
<td>Na₂O</td>
<td>6.32 (0.34)</td>
<td>6.71 (0.76)</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.08 (0.07)</td>
<td>0.03 (0.01)</td>
<td>0.04 (0.01)</td>
<td>K₂O</td>
<td>0.07 (0.03)</td>
<td>0.06 (0.03)</td>
</tr>
<tr>
<td>Total</td>
<td>99.95 (0.33)</td>
<td>100.59 (0.26)</td>
<td>100.28 (0.82)</td>
<td>Total</td>
<td>100.93 (0.51)</td>
<td>101.15 (0.69)</td>
</tr>
<tr>
<td>Si</td>
<td>2.257 (0.034)</td>
<td>2.378 (0.016)</td>
<td>2.417 (0.021)</td>
<td>Si</td>
<td>3.064 (0.008)</td>
<td>3.044 (0.091)</td>
</tr>
<tr>
<td>Ti</td>
<td>0.001 (0.000)</td>
<td>0.002 (0.000)</td>
<td>0.002 (0.000)</td>
<td>Ti</td>
<td>0.012 (0.002)</td>
<td>0.012 (0.002)</td>
</tr>
<tr>
<td>Al</td>
<td>1.722 (0.034)</td>
<td>1.570 (0.020)</td>
<td>1.565 (0.027)</td>
<td>Al</td>
<td>1.870 (0.028)</td>
<td>1.827 (0.072)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.006 (0.001)</td>
<td>0.002 (0.002)</td>
<td>0.004 (0.001)</td>
<td>Fe</td>
<td>0.009 (0.003)</td>
<td>0.010 (0.002)</td>
</tr>
<tr>
<td>Mg</td>
<td>0.011 (0.005)</td>
<td>0.010 (0.004)</td>
<td>0.011 (0.003)</td>
<td>Mg</td>
<td>0.607 (0.023)</td>
<td>0.591 (0.074)</td>
</tr>
<tr>
<td>Ca</td>
<td>0.697 (0.016)</td>
<td>0.702 (0.016)</td>
<td>0.615 (0.014)</td>
<td>Mg</td>
<td>1.942 (0.061)</td>
<td>1.920 (0.084)</td>
</tr>
<tr>
<td>Na</td>
<td>0.303 (0.015)</td>
<td>0.333 (0.016)</td>
<td>0.388 (0.013)</td>
<td>Na</td>
<td>0.481 (0.027)</td>
<td>0.506 (0.063)</td>
</tr>
<tr>
<td>K</td>
<td>0.001 (0.001)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>Na</td>
<td>0.009 (0.005)</td>
<td>0.008 (0.003)</td>
</tr>
<tr>
<td>Cat.Sum.</td>
<td>4.998 (0.009)</td>
<td>4.998 (0.011)</td>
<td>5.000 (0.013)</td>
<td>Cat.Sum.</td>
<td>7.994 (0.008)</td>
<td>7.969 (0.009)</td>
</tr>
<tr>
<td>Ca+Na</td>
<td>1.000 (0.021)</td>
<td>1.035 (0.022)</td>
<td>1.003 (0.018)</td>
<td>Ca+Na</td>
<td>0.760 (0.008)</td>
<td>0.754 (0.012)</td>
</tr>
<tr>
<td>An</td>
<td>0.696 (0.015)</td>
<td>0.679 (0.016)</td>
<td>0.613 (0.013)</td>
<td>An</td>
<td>0.696 (0.015)</td>
<td>0.679 (0.016)</td>
</tr>
</tbody>
</table>

An = Ca/(Ca + Na); X_Mg = Mg/(Mg+Fe**2+). Numbers in parentheses correspond to 1sigma standard deviations. Cations are calculated on the basis of 8 and 6 oxygens for plagioclase and garnet, respectively. All Fe = Fe**2+.
Table 8. Phase proportions (wt%) in experiments calculated by weighted mass balance

<table>
<thead>
<tr>
<th>Run</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>cpx</th>
<th>opx</th>
<th>ol</th>
<th>spl</th>
<th>pl</th>
<th>grt</th>
<th>R2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV10-83-25</td>
<td>0.7</td>
<td>1100</td>
<td>60.0(3.1)</td>
<td>12.6(3.7)</td>
<td>11.9(2.6)</td>
<td>1.7(0.9)</td>
<td>13.7(2.1)</td>
<td>0</td>
<td>0.389</td>
</tr>
<tr>
<td>GV10-83-23</td>
<td>0.8</td>
<td>1100</td>
<td>59.0(1.7)</td>
<td>14.9(3.2)</td>
<td>11.4(2.5)</td>
<td>3.2(0.6)</td>
<td>11.8(1.8)</td>
<td>0</td>
<td>0.256</td>
</tr>
<tr>
<td>GV10-83-24</td>
<td>0.9</td>
<td>1100</td>
<td>62.4(1.6)</td>
<td>16.2(3.1)</td>
<td>9.1(2.6)</td>
<td>3.8(0.8)</td>
<td>8.7(1.9)</td>
<td>0</td>
<td>0.287</td>
</tr>
<tr>
<td>GV10-83-5</td>
<td>1.0</td>
<td>1100</td>
<td>76.2(4.5)</td>
<td>14.4(2.8)</td>
<td>4.7(1.2)</td>
<td>4.6(1.1)</td>
<td>0</td>
<td>0</td>
<td>0.142</td>
</tr>
<tr>
<td>GV10-83-4*</td>
<td>1.0</td>
<td>1180</td>
<td>74.4(2.7)</td>
<td>16.1(5.1)</td>
<td>5.2(2.9)</td>
<td>4.5(1.3)</td>
<td>0</td>
<td>0</td>
<td>0.213</td>
</tr>
<tr>
<td>GV10-83-12</td>
<td>1.3</td>
<td>1150</td>
<td>79.4(1.6)</td>
<td>11.8(3.2)</td>
<td>4.9(1.9)</td>
<td>4.1(0.6)</td>
<td>0</td>
<td>0</td>
<td>0.095</td>
</tr>
<tr>
<td>GV10-83-17</td>
<td>1.4</td>
<td>1150</td>
<td>77.4(3.9)</td>
<td>13.7(6.4)</td>
<td>4.1(3.2)</td>
<td>4.7(1.1)</td>
<td>0</td>
<td>0</td>
<td>0.263</td>
</tr>
<tr>
<td>GV10-83-3</td>
<td>1.5</td>
<td>1150</td>
<td>71.1(2.7)</td>
<td>10.1(3.2)</td>
<td>5.8(2.3)</td>
<td>2.4(2.1)</td>
<td>0</td>
<td>10.5(3.7)</td>
<td>0.147</td>
</tr>
<tr>
<td>GV10-83-7</td>
<td>1.5</td>
<td>1200</td>
<td>75.6(3.2)</td>
<td>7.6(2.7)</td>
<td>6.1(3.2)</td>
<td>2.1(0.9)</td>
<td>0</td>
<td>8.2(2.5)</td>
<td>0.244</td>
</tr>
<tr>
<td>GV10-83-16*</td>
<td>1.5</td>
<td>1230</td>
<td>78.1(4.1)</td>
<td>6.7(5.3)</td>
<td>6.3(2.1)</td>
<td>3.1(1.9)</td>
<td>0</td>
<td>5.2(4.6)</td>
<td>0.342</td>
</tr>
</tbody>
</table>

(*) Sum of the squares of residuals for all elements calculated as the sum of the squares of the difference between model and calculated composition.
cpx, clinopyroxene; opx, orthopyroxene, ol, olivine; spl, spinel; pl, plagioclase; grt, garnet.
Numbers in parentheses are propagated errors from Monte Carlo simulations.
Modal amounts for experiments at 0.7 GPa, 1100°C, have been computed by using olivine and spinel compositions from experiments at 0.8 GPa, 1100°C.